[发明专利]一种车牌类型识别模型构建及车牌类型识别方法在审
申请号: | 202110575676.3 | 申请日: | 2021-05-25 |
公开(公告)号: | CN113313110A | 公开(公告)日: | 2021-08-27 |
发明(设计)人: | 马洪民;宋征;吕晓鹏;张星;李高杨 | 申请(专利权)人: | 北京易华录信息技术股份有限公司 |
主分类号: | G06K9/32 | 分类号: | G06K9/32;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京三聚阳光知识产权代理有限公司 11250 | 代理人: | 李博洋 |
地址: | 100043 北京市石景*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 车牌 类型 识别 模型 构建 方法 | ||
本发明公开了一种车牌类型识别模型构建及车牌类型识别方法,包括:获取多个不同种类的车牌图像作为训练样本;对训练样本进行均匀采样,将采样后得到的车牌图像输入到第一神经网络模型进行训练得到第一车牌类型识别模型;确定所述训练样本中每一种车牌图像的数量;对数量满足第一预设数量条件的车牌图像进行过采样处理;对数量满足第二预设数量条件的车牌图像进行欠采样处理;利用过采样处理后得到的车牌图像和欠采样处理后得到的车牌图像构成的训练样本训练第二神经网络模型得到第二车牌类型识别模型;将第一车牌类型识别模型和第二车牌类型识别模型进行融合,得到用于进行车牌类型识别的骨干网络。
技术领域
本发明涉及车辆识别技术领域,具体涉及一种车牌类型识别模型构建及车牌类型识别方法。
背景技术
在智能交通应用场景中,一般通过对采集到的车辆图像中车牌号码的识别来确定场景中车辆的身份,但当采集到的车辆图像的分辨率较低或车牌号码局部被遮挡,可能导致车牌号码识别错误,甚至无法识别出车牌号码,当遇到突发交通情况时,影响对场景中车辆身份的确认。由于机动车车牌分为多个类型,如可以包括普通蓝牌、单层黄牌、教练车牌、警用车牌、新能源白绿牌、新能源黄绿牌、挂车牌、双层黄牌、临行车牌等类型,通过识别车牌类型属性可以进一步缩小车辆查询范围。
在进行训练样本采样以用于训练机器学习模型的过程中,由于目前道路上行驶的车辆中普通蓝牌和新能源车牌占据较大比例,而警用车、挂车牌、双层黄牌、临行车牌等类型的车牌较少,因此造成采集到的训练样本存在不均衡的问题,继而导致训练得到的机器学习模型对车牌类型的识别结果的准确性。
发明内容
因此,本发明要解决的技术问题在于克服现有对车牌类型的识别结果准确性差的缺陷,从而提供一种车牌类型识别模型构建及车牌类型识别方法。
根据第一方面,本发明实施例公开了一种车牌类型识别模型构建方法,包括:获取多个不同种类的车牌图像作为训练样本;对所述训练样本进行均匀采样,将采样后得到的车牌图像输入到第一神经网络模型进行训练,得到第一车牌类型识别模型;确定所述训练样本中每一种车牌图像的数量;对数量满足第一预设数量条件的车牌图像进行过采样处理;对数量满足第二预设数量条件的车牌图像进行欠采样处理,其中所述第二预设数量条件对应的数量值大于所述第一预设数量条件对应的数量值;利用过采样处理后得到的车牌图像和欠采样处理后得到的车牌图像构成的训练样本训练第二神经网络模型,得到第二车牌类型识别模型;将所述第一车牌类型识别模型和所述第二车牌类型识别模型进行融合,得到用于进行车牌类型识别的骨干网络。
可选地,所述获取多个不同种类的车牌图像作为训练样本,包括:获取每一种车辆在多个场景下、多个时间段内不同角度的车辆图像,每一个车辆图像包含的车牌图像满足预设清晰度和完整度要求;利用预设关键点定位方法定位得到每一个车辆图像中的车牌图像;根据定位得到的车牌图像的关键点计算车牌的水平倾斜角度与垂直倾斜角度;对定位得到的每一个车辆图像中的车牌图像进行抠图处理,将得到的车牌图像按照所述水平倾斜角度与垂直倾斜角度进行旋转处理;对旋转处理后得到的车牌图像进行标签化处理得到所述训练样本。
可选地,将所述第一车牌类型识别模型和所述第二车牌类型识别模型进行融合,得到用于进行车牌类型识别的骨干网络,包括:获取所述第一车牌类型识别模型中每一个目标层的第一权重以及所述第二车牌类型识别模型中与所述目标层相对应的层的第二权重;利用预设调节参数对所述第一权重和所述第二权重进行预处理,得到共享权重;利用所述共享权重替换所述第一车牌类型识别模型中所述目标层的第一权重,利用所述共享权重替换所述第二车牌类型识别模型中与所述目标层相对应的层的第二权重;将权重替换处理后的第一车牌识别模型和权重替换处理后的第二车牌类型识别模型进行融合处理,得到用于进行车牌类型识别的骨干网络。
可选地,所述利用预设调节参数对所述第一权重和所述第二权重进行预处理,得到共享权重,包括:按照下式进行预处理:
ω=λω1+(1-λ)ω2
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京易华录信息技术股份有限公司,未经北京易华录信息技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110575676.3/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种用于工业互联网的数据工程机数据传输方法
- 下一篇:水系有机液流电池