[发明专利]人脸图像的修复方法与装置、修复模型、介质和设备在审

专利信息
申请号: 202110432456.5 申请日: 2021-04-21
公开(公告)号: CN113066034A 公开(公告)日: 2021-07-02
发明(设计)人: 刘恩雨;李松南 申请(专利权)人: 腾讯科技(深圳)有限公司
主分类号: G06T5/00 分类号: G06T5/00;G06T5/50;G06N20/00
代理公司: 深圳市隆天联鼎知识产权代理有限公司 44232 代理人: 叶虹
地址: 518057 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 修复 方法 装置 模型 介质 设备
【权利要求书】:

1.一种人脸图像的修复方法,其特征在于,所述方法包括:

获取待修复图像,并获取所述待修复图像对应的人脸标记点图像;

将所述待修复图像和所述人脸标记点图像输入至人脸图像的修复模型;

基于所述人脸图像的修复模型对所述待修复图像和所述人脸标记点图像进行至少两次空间特征转换处理,得到融合人脸特征;

将所述融合人脸特征进行卷积处理,并将所述人脸图像的修复模型的输出确定为所述待修复图像对应的修复后图像。

2.根据权利要求1所述的方法,其特征在于,基于所述人脸图像的修复模型对所述待修复图像和所述人脸标记点图像进行至少两次空间特征转换处理,得到融合人脸特征,包括:

基于所述人脸图像的修复模型对所述待修复图像进行至少两次卷积处理,得到所述人脸原始特征;

基于所述人脸图像的修复模型对所述人脸标记点图像进行至少两次卷积处理,得到所述人脸标记特征;

基于所述人脸图像的修复模型对所述人脸原始特征和所述人脸标记特征进行N次空间特征转换处理,得到所述融合人脸特征,N为不小于2的正整数。

3.根据权利要求2所述的方法,其特征在于,基于所述人脸图像的修复模型对所述人脸原始特征和所述人脸标记特征进行N次空间特征转换处理,包括:

对所述人脸原始特征和所述人脸标记特征进行第i空间特征转换处理,得到第i融合人脸特征,i取值为小于N的正整数;

将所述第i融合人脸特征和所述人脸标记特征进行第i+1空间特征转换处理,得到第i+1融合人脸特征;

对所述第N融合人脸特征和所述人脸原始特征进行特征合并处理,并将合并处理后的特征与所述人脸标记特征进行第N空间特征转换处理,得到所述融合人脸特征。

4.根据权利要求3所述的方法,其特征在于,对所述人脸原始特征和所述人脸标记特征进行第i空间特征转换处理,得到第i融合人脸特征,包括:

将所述人脸原始特征和所述人脸标记特征进行第i组合处理,得到第i人脸组合特征;

将所述第i人脸组合特征与所述人脸标记特征进行特征合并处理,得到所述第i融合人脸特征。

5.根据权利要求3所述的方法,其特征在于,将所述第i融合人脸特征和所述人脸标记特征进行第i+1空间特征转换处理,得到第i+1融合人脸特征,包括:

将所述第i融合人脸特征和所述人脸标记特征进行第i+1组合处理,得到第i+1人脸组合特征;

将所述第i+1人脸组合特征与所述人脸标记特征进行特征合并处理,得到所述第i+1融合人脸特征。

6.根据权利要求3所述的方法,其特征在于,将所述第i融合人脸特征和所述人脸标记特征进行第i+1空间特征转换处理,得到第i+1融合人脸特征,包括:

对所述第i融合人脸特征进行第i卷积处理,将卷积处理之后的第i融合人脸特征和所述人脸标记特征进行第i+1空间特征转换处理,得到所述第i+1融合人脸特征。

7.根据权利要求3所述的方法,其特征在于,对所述第N融合人脸特征和所述人脸原始特征进行特征合并处理,包括:

对所述第N融合人脸特征和所述人脸原始特征进行特征求和处理。

8.根据权利要求1至7中任意一项所述的方法,其特征在于,获取所述待修复图像对应的人脸标记点图像,包括:

对所述待修复图像进行人脸检测以确定人脸区域;

对所述待修复图像中的所述人脸区域进行人脸特征点检测,得到特征点数据;

对所述特征点数据进行人脸对齐处理,将人脸对齐处理后图像中进行二值化处理,得到人脸标记点图像。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110432456.5/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top