[发明专利]一种基于贝叶斯回归的多来源降雨数据融合算法及装置有效
申请号: | 202110251215.0 | 申请日: | 2021-03-08 |
公开(公告)号: | CN112612995B | 公开(公告)日: | 2021-07-09 |
发明(设计)人: | 包申旭;杨盼;杨思原 | 申请(专利权)人: | 武汉理工大学 |
主分类号: | G06F17/11 | 分类号: | G06F17/11;G06F17/15 |
代理公司: | 武汉智嘉联合知识产权代理事务所(普通合伙) 42231 | 代理人: | 黄君军 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 贝叶斯 回归 来源 降雨 数据 融合 算法 装置 | ||
本发明涉及一种基于贝叶斯回归的多来源降雨数据融合算法及装置,该算法包括:获取至少一个地点位置的观测数据;根据雷达回波强度数据,建立估算降雨强度的线性方程;根据线性方程对应的随机误差系数,确定对应的变差函数;根据线性方程的回归系数、随机误差系数,以及变差函数的取值系数,确定对应的第一向量;通过贝叶斯公式对第一向量进行估计,确定对应的似然函数,并通过似然函数的正态分布,将第一向量转换为第二向量;通过拉普拉斯近似的方法,求解第二向量的最优值,并带入估算降雨强度的线性方程,确定降雨强度估计值。本发明简单、运行效率高,导出的实时降雨强度估算数据准确性高,为径流估算数据提供精确的数据来源。
技术领域
本发明涉及智慧城市建设技术领域,尤其涉及一种基于贝叶斯回归的多来源降雨数据融合算法及装置。
背景技术
SWMM模型是由美国环保局推出的一种暴雨径流模型,能够完整地模拟城市降雨径流过程和污染物转移过程,目前广泛应用于暴雨径流模拟和城市排水系统管理。SWMM模型可以模拟分析现有管网的排水能力,确定管网排水能力不足的“瓶颈”段,同时依据模拟结果预先测出设计改造方案的实际效果,通过分析对比经济性指标,可获得合理经济的方案。但是SWMM模型的目前主要应用于对已有管网的模拟分析和已有管网改造方案对比。目前,雨水管网设计主要是人工雨水管网设计,它基于极限暴雨强度所计算的流量,凭经验采用反复查阅水力计算表的方法对管段的管径和坡度等进行人为的调整,以获得较经济合理的设计。该人工雨水管网设计方法计算量大,且计算结果精确度较低。这种人工雨水管网设计方法的水力计算过程基于静态的明渠流公式,假定下游可以自由出流,水力计算过程孤立,管网的设计过程完全忽略了下游管道的水力流动状况,难以体现管网的实际通洪效果,以至于产生局部瓶颈现象,导致内涝的发生。也就是说:现有雨水管网设计方法的静态化的计算过程难以满足城市建设和环境保护的需求。
随着科学技术的发展,各国各省市对暴雨径流模拟精度要求越来越高。提高降雨输入数据精度可以大大提高暴雨径流模拟数据。在城市区域,降雨数据通常包括雷达和降雨站,雷达降雨数据有高覆盖率的优点,但雷达所测降雨通常存在系统性偏差,本身误差及不确定性也较大;降雨站监测误差小,但是站点分布稀疏,难以提供高分辨率空间信息,所以得不出准确的实时降雨强度估算。
近年来,国内外兴起了通过众包监测降雨的研究与实践。众包降雨是普通市民利用物联网监测到的降雨数据,在提供有价值的实时降雨观测数据方面具有巨大潜力。众包方式鼓励市民利用低成本物联网传感器进行降雨监测,覆盖范围极大,密度极高,准确性高。因此得到的众包降雨数据密度高,范围广。但通常而言,众包降雨数据带有较大的不确定性,相对于传统监测方法(如降雨站)具有更大的误差。而在城市区域,如何有效结合众包数据与现有的雷达和降雨站数据,各取其所长,构建一套更加高分辨率和精确度的降雨数据,十分重要。综上,如何加强降雨数据的准确性是亟待解决的问题。
发明内容
有鉴于此,有必要提供一种基于贝叶斯回归的多来源降雨数据融合算法,用以解决如何加强降雨数据的准确性的问题。
本发明提供一种基于贝叶斯回归的多来源降雨数据融合算法,包括:
获取至少一个地点位置的观测数据,其中,所述观测数据包括雷达回波强度数据、降雨站监测数据以及众包监测数据;
根据所述雷达回波强度数据,建立估算降雨强度的线性方程;
根据所述线性方程对应的随机误差系数,确定对应的变差函数;
根据所述线性方程的回归系数、所述随机误差系数,以及所述变差函数的取值系数,确定对应的第一向量;
通过贝叶斯公式对所述第一向量进行估计,确定对应的似然函数,并通过所述似然函数的正态分布,将所述第一向量转换为第二向量;
通过拉普拉斯近似的方法,求解所述第二向量的最优值,并带入所述估算降雨强度的线性方程,确定降雨强度估计值。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉理工大学,未经武汉理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110251215.0/2.html,转载请声明来源钻瓜专利网。