[发明专利]基于表示学习和行为特征的通信网用户呼叫对象预测方法有效

专利信息
申请号: 202110106920.1 申请日: 2021-01-27
公开(公告)号: CN112446556B 公开(公告)日: 2021-04-30
发明(设计)人: 刘峤;蓝天;曾义夫;代婷婷;宋明慧;周乐;孙建强;曾维智;吴祖峰 申请(专利权)人: 电子科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/26;G06Q50/30;G06N3/04;G06N3/08
代理公司: 电子科技大学专利中心 51203 代理人: 吴姗霖
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 表示 学习 行为 特征 通信网 用户 呼叫 对象 预测 方法
【说明书】:

发明提供基于表示学习和行为特征的通信网用户呼叫对象预测方法,属于通信网络用户行为分析技术领域,包括:随机生成通信网络中各通信节点的初始向量,构造呼叫顺序网络;根据各用户呼叫历史记录提取三元组集合,构造并训练由LSTM循环神经网络和双线性层堆叠而成的图表示学习模型,获得所有通信节点的更新后通信节点向量;构造并训练由并行的通信时长‑位置加权层和双向‑长期短期记忆神经网络,堆叠前馈神经网络和双线性层而成的呼叫对象预测模型;待预测用户历史呼叫记录基于更新后通信节点向量和训练后呼叫对象预测模型,实现预测。本发明基于用户呼叫历史记录分析,根据通信节点拓扑信息、通信顺序信息和用户长短期行为特征实现预测。

技术领域

本发明属于通信网络用户行为分析技术领域,具体涉及基于表示学习和行为特征的通信网用户呼叫对象预测方法。

背景技术

随着信息技术的更新换代,近年来移动通信工具特别是智能手机得到迅速普及,极大方便了人们的生活,并产生了海量的用户通信行为历史数据。然而,便捷的通信工具也成为了违法犯罪团伙的联系和组织手段,由于犯罪团伙组织的隐蔽性和执法人员侦察的滞后性,针对通信网络中用户的下一次通信对象预测已成为一个十分重要且有价值的问题,可有效辅助相关执法部门准确预测目标用户未来可能的通信对象从而提前开展通信监听与行动部署,可为例如公共安全领域中的维稳反恐等工作提供支持,具有广泛的应用前景。

然而,在大规模的用户呼叫历史行为数据中进行目标用户的下一次通信对象预测存在很多困难:首先,电信运营商多元化的服务与用户数据的迅速增长产生了海量的用户数据,往往一个市级范围内的通信数据中就含有千万级的用户,计算量大导致传统方法很难有效处理;另外,用户在通信网络中并不是独立存在的个体,而是存在关联并形成通信网络,并且用户的呼叫历史记录中蕴含了通信优先顺序等信息,仅考虑用户呼叫历史记录统计特征的通信对象预测方法或者仅针对用户在通信网中节点相似性的通信对象预测方法能力有限;此外,现有的对通信网中用户行为的研究主要聚焦在通信网整体流量变化分析,伪造号码识别,诈骗电话检测等问题上,对用户下一次通信对象的预测问题缺乏现成技术方案和深度研究。

因此,需要提出一种智能有效的通信对象预测方法,能够基于海量数据,将用户所在通信网络中拓扑信息与用户呼叫历史行为中的用户行为特征相结合,基于表示学习和深度学习的用户呼叫对象预测方法,准确高效的预测用户下一次的通信对象,从而满足公共安全等领域相关部门机构针对通信网用户的侦察和监控需求。

发明内容

本发明针对上述现有技术中存在的问题,提出了基于表示学习和行为特征的通信网用户呼叫对象预测方法,通过分析用户呼叫历史行为所产生的海量数据,预测用户的下一次呼叫对象。

本发明所采用的技术方案如下:

基于表示学习和行为特征的通信网用户呼叫对象预测方法,其特征在于,包括以下步骤:

步骤1:随机生成通信网络中各通信节点的初始向量,得到通信节点初始向量集合;其中,|V|为通信网络中通信节点的总个数;

步骤2:根据通信网络中各用户呼叫历史记录中的通信节点被呼叫的先后顺序构造呼叫顺序网络G={V,E};其中,V为通信节点集合,E为V中各通信节点之间联系的集合,即用户呼叫通信节点之后,呼叫另一个通信节点,那么会存在联系,,;

步骤3:定义步骤2所得呼叫顺序网络G={V,E}中的一条由起始通信节点、其次通信节点和最终通信节点组成的通信顺序路径为一个三元组,,根据通信网络中各用户呼叫历史记录提取三元组集合,作为图表示学习模型的训练集;

步骤4:构造并训练由LSTM(Long Short-Term Memory,长短期记忆网络)循环神经网络和双线性(Bi-Linear)层堆叠而成的图表示学习模型,得到各通信节点的更新后通信节点向量,具体步骤如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110106920.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top