[发明专利]基于大数据技术的托辊故障诊断方法、系统及存储介质有效

专利信息
申请号: 202011437844.4 申请日: 2020-12-07
公开(公告)号: CN112660746B 公开(公告)日: 2022-04-08
发明(设计)人: 刘娟;罗辛;程雪峰;黄学达 申请(专利权)人: 中国科学院重庆绿色智能技术研究院;重庆大学
主分类号: B65G43/06 分类号: B65G43/06
代理公司: 重庆市前沿专利事务所(普通合伙) 50211 代理人: 郭云
地址: 400714 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 数据 技术 故障诊断 方法 系统 存储 介质
【说明书】:

本发明公开了一种基于大数据技术的托辊故障诊断方法、系统及存储介质。所述基于大数据技术的托辊故障诊断方法包括以下步骤:S1,采集托辊音频数据;S2,提取音频数据的特征;所述音频数据的特征具体包括尖锐度、噪声烦恼度以及言语干扰级之一或任意组合;S3,音频数据的特征输入至已训练的逻辑回归模型中,逻辑回归模型对托辊的运行状态进行识别;S4,若托辊运行异常,执行警报、监视或控制操作;若托辊运行正常,完成当前时刻的托辊故障诊断,执行步骤S5;S5,更新时刻,重复执行步骤S1至步骤S4,进行下一时刻的托辊故障诊断。本发明可以实现对托辊故障的实时诊断,并且易实现成本低,算法复杂度低。

技术领域

本发明涉及输送机托辊故障诊断领域,具体涉及一种基于大数据技术的托辊故障诊断方法、系统及存储介质。

背景技术

带式输送机用于输送物料,是工业生产工艺流程的重要一环。带式输送机可以组成高效的运输流水线,提高工业生产效率,减轻工人劳动强度,被广泛应用于矿山、电力、码头等行业。带式输送机长时间负载运行,容易发生各类故障,如:托辊损坏、皮带撕裂等。其中,托辊故障是引起带式输送机停机的主要原因之一。托辊是带式输送机重要运转部件,数量众多(约1~3米布置一组),主要起到支撑胶带和承载及减小运行阻力作用。常见托辊故障为运转不良(卡顿、偏心、破损),如果异常托辊没有在早期发现、不及时更换,易引发胶带摩擦起火、撕裂等,甚至引起人身伤亡事故,造成设备损坏、停产等重大经济损失。因此对带式输送机托辊进行异常监测,及时发现故障前兆并报警,对安全、高效生产有重大意义。带式输送机托辊故障主要表现形式为异响、噪声,如:高频嘶鸣、沙沙异响等,因此可以提取并分析声音信号的时、频域特征,实现托辊异常早期检测与报警。

目前,带式输送机的托辊故障检测以人工巡检为主,检测工作人员凭着多年的工作经验,通过敲打、察看、细听等方式完成检修工作,这种方式效率低,存在漏检,无法及时发现托辊早期故障。除此之外,也有部分托辊自动检测方法方面的研究,其中,大多自动检测方法采用多种传感器融合的方法判断托辊故障,但该方法硬件复杂,数据繁杂,不便于应用;少数自动检测方法仅采集音频数据进行判断,虽采集数据简单,但仅通过判断音频数据的分贝识别判断故障,对音频数据仅进行简单的处理判断,未深度挖掘音频的特征,判断结果不准确,易受干扰。例如申请为CN201910168680.0的专利申请公开了一种输煤系统智能无人巡检系统,通过视觉、噪声等多种信息的融合实现故障诊断,但硬件成本高,计算量大。例如申请号为CN201810532489.5的专利公开了一种输送机的故障识别方法、装置及系统,该装置通过提取周期性音频信号,识别托辊的故障,但该方案采样频率高,音频信号的特征提取单一,仍然易受干扰。

发明内容

本发明的目的在于克服现有技术中所存在的未充分运用音频信号特征,不能快速高效的判断托辊故障的不足,提供一种便于实施、运算高效的基于大数据技术的托辊故障诊断方法、系统及存储介质,将音频数据的深度分析与逻辑回归模型的智能识别判断相结合,实现对托辊故障的实时诊断。

为了实现上述发明目的,本发明提供了以下技术方案:

一种基于大数据技术的托辊故障诊断方法,包括以下步骤:

S1,采集托辊音频数据;

S2,提取音频数据的特征;所述音频数据的特征具体包括尖锐度、噪声烦恼度以及言语干扰级之一或任意组合;

S3,音频数据的特征输入至已训练的逻辑回归模型中,逻辑回归模型对托辊的运行状态进行识别;

S4,若托辊运行异常,执行警报、监视或控制操作;若托辊运行正常,完成当前时刻的托辊故障诊断,执行步骤S5;

S5,更新时刻,重复执行步骤S1至步骤S4,进行下一时刻的托辊故障诊断。

优选地,所述步骤S2采集的音频数据的特征包括尖锐度、噪声烦恼度以及言语干扰级;对音频数据进行频域变换得到音频数据的频域信息,然后计算尖锐度、噪声烦恼度以及言语干扰级。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院重庆绿色智能技术研究院;重庆大学,未经中国科学院重庆绿色智能技术研究院;重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011437844.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top