[发明专利]钢轨伤损检测方法在审
申请号: | 202011354927.7 | 申请日: | 2020-11-27 |
公开(公告)号: | CN112465027A | 公开(公告)日: | 2021-03-09 |
发明(设计)人: | 黄梦莹;罗江平;曹经纬;袁浩;林军;夏浪;陈高科;王品 | 申请(专利权)人: | 株洲时代电子技术有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06N20/00;G06T7/00 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 刘奕 |
地址: | 412007 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 钢轨 伤损 检测 方法 | ||
1.一种钢轨伤损检测方法,其特征在于,包括以下步骤:
检测计算机(11)与车载计算机(12)共享数据文件,所述车载计算机(12)对数据文件进行解析和伤损识别后,将识别结果以B型图的形式显示于第一显示模块(14)中,并存储在第一存储模块(15)中;所述车载计算机(12)将伤损样本和伤损识别结果发送至样本库服务器(22)中;
所述检测计算机(11)与地面计算机(21)共享数据文件,所述地面计算机(21)对数据文件进行解析和伤损识别后,将识别结果以B型图的形式显示在第二显示模块(24)中,并存储在第二存储模块(25)中;
所述地面计算机(21)将伤损样本和伤损识别结果传输至样本库服务器(22)中,所述样本库服务器(22)实现样本库管理功能;
深度学习工作站(23)根据所述样本库服务器(22)中的选定样本进行伤损识别模型(204)的优化,当伤损识别模型(204)测试通过后,对所述车载计算机(12)及地面计算机(21)中的伤损识别模型(204)进行升级;
所述伤损识别模型(204)基于卷积神经网络生成,输入所述卷积神经网络的图像为N个通道叠加而成且带有方向的RGB重构图像。
2.一种钢轨伤损检测方法,其特征在于,包括以下步骤:
检测计算机(11)对数据文件进行解析和伤损识别后,将识别结果以B型图的形式显示于第一显示模块(14)中,并存储在第一存储模块(15)中;所述检测计算机(11)将伤损样本和伤损识别结果发送至样本库服务器(22)中,所述样本库服务器(22)实现样本库管理功能;
深度学习工作站(23)根据所述样本库服务器(22)中的选定样本进行伤损识别模型(204)的优化,当伤损识别模型(204)测试通过后,对检测计算机(11)中的伤损识别模型(204)进行升级;
所述伤损识别模型(204)基于卷积神经网络生成,输入所述卷积神经网络的图像为N个通道叠加而成且带有方向的RGB重构图像。
3.一种钢轨伤损检测方法,其特征在于,包括以下步骤:
检测计算机(11)与车载计算机(12)共享数据文件,所述车载计算机(12)对数据文件进行解析和伤损识别后,将识别结果以B型图的形式显示于第一显示模块(14)中,并存储在第一存储模块(15)中;所述车载计算机(12)将伤损样本和伤损识别结果发送至样本库服务器(22)中,所述样本库服务器(22)实现样本库管理功能;
深度学习工作站(23)根据所述样本库服务器(22)中的选定样本进行伤损识别模型(204)的优化,当伤损识别模型(204)测试通过后,对所述车载计算机(12)中的伤损识别模型(204)进行升级;
所述伤损识别模型(204)基于卷积神经网络生成,输入所述卷积神经网络的图像为N个通道叠加而成且带有方向的RGB重构图像。
4.一种钢轨伤损检测方法,其特征在于,包括以下步骤:
检测计算机(11)与地面计算机(21)共享数据文件,所述地面计算机(21)对数据文件进行解析和自动伤损识别后,将识别结果以B型图的形式显示在第二显示模块(24)中,并存储在第二存储模块(25)中;所述地面计算机(21)将伤损样本和伤损识别结果传输至样本库服务器(22)中,所述样本库服务器(22)实现样本库管理功能;深度学习工作站(23)根据所述样本库服务器(22)中的选定样本进行伤损识别模型(204)的优化,当伤损识别模型(204)测试通过后,对所述地面计算机(21)中的伤损识别模型(204)进行升级;所述伤损识别模型(204)基于卷积神经网络生成,输入所述卷积神经网络的图像为N个通道叠加而成且带有方向的RGB重构图像。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于株洲时代电子技术有限公司,未经株洲时代电子技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011354927.7/1.html,转载请声明来源钻瓜专利网。
- 上一篇:气体智能减压阀
- 下一篇:一种收割机割刀结构以及收割机