[发明专利]一种人脸识别方法、系统、终端以及存储介质在审
申请号: | 202011284648.8 | 申请日: | 2020-11-17 |
公开(公告)号: | CN112257672A | 公开(公告)日: | 2021-01-22 |
发明(设计)人: | 钱静;彭树宏 | 申请(专利权)人: | 中国科学院深圳先进技术研究院 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/40;G06N3/08;G06N3/04 |
代理公司: | 深圳市科进知识产权代理事务所(普通合伙) 44316 | 代理人: | 魏毅宏 |
地址: | 518055 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 识别 方法 系统 终端 以及 存储 介质 | ||
本申请涉及一种人脸识别方法、系统、终端以及存储介质。包括:对动态视频进行人脸捕捉并截图,获取静态人脸图片;对所述静态人脸图片进行特征值提取,生成特征矩阵;将所述特征矩阵输入训练好的BP神经网络,通过所述BP神经网络输出人脸识别结果;所述BP神经网络包括输入层、隐含层以及输出层,输入数据从所述输入层的所有的神经元进入,在所述隐含层中进行计算,将计算结果输入所述输出层的每个神经元进行计算,得到人脸识别结果。本申请通过对人脸图片进行人脸特征提取,生成特征矩阵,并利用BP神经网络采用逆向传播算法进行人脸识别,能极大的提高人脸识别效率以及识别精度。
技术领域
本申请属于人脸识别技术领域,特别涉及一种人脸识别方法、系统、终端以及存储介质。
背景技术
早在上世纪60年代,经历了半个世纪之久的发展,到如今,人脸识别已进入国内外的高速发展期。人脸识别能够快速发展主要在于其能够快速的带动相关学科的进步,由于人脸识别是一个非常复杂且涉及多方面技术的结合体,通常会涉及到最经典的图像模式处理、计算机视觉、计算机图形学、科学方面的认识、生理学、心理学、AI、数学逻辑计算等多种学科的结合交叉,搭成一个全新的领域,应用于实际生活中,结合AI,可以引领社会进入更高层次的生活条件中。同时,人脸识别技术具有相当大的应用潜力,目前,人脸识别的应用领域非常广泛,例如手机人脸解锁、门锁人脸识别、公安运用人脸识别破案以及吃饭“刷脸”等,给人们的生活也带来了极大的便利。因此,人脸识别的研究具有非常实用的意义。
现有技术中,主要的人脸识别方法包括几何特征的人脸识别方法、判别分析法(Fisher)、模板匹配法、特征脸法(Eige naface)、独立主元分析法(LCA)、隐马尔可夫方法(HMM)、支持向量机法(SVM)、奇异值分解法(SVD)、弹性图匹配方法及神经网络方法等,但由于人脸识别过程中会受到人的表情扭曲、喜怒哀乐变化等因素的影响,上述方法都存在较多的限制性条件,不能很好的进行人脸识别。
发明内容
本申请提供了一种人脸识别方法、系统、终端以及存储介质,旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为了解决上述问题,本申请提供了如下技术方案:
一种人脸识别方法,包括:
对动态视频进行人脸捕捉并截图,获取静态人脸图片;
对所述静态人脸图片进行特征值提取,生成特征矩阵;
将所述特征矩阵输入训练好的BP神经网络,通过所述BP神经网络输出人脸识别结果;所述BP神经网络包括输入层、隐含层以及输出层,输入数据从所述输入层的所有的神经元进入,在所述隐含层中进行计算,将计算结果输入所述输出层的每个神经元进行计算,得到人脸识别结果。
本申请实施例采取的技术方案还包括:所述对动态视频进行人脸捕捉并截图,获取静态人脸图片还包括:
采用灰度化及中值滤波对所述静态人脸图片进行预处理。
本申请实施例采取的技术方案还包括:所述采用灰度化及中值滤波对所述静态人脸图片进行预处理包括:
对所述静态人脸图片进行灰度处理,将所述静态人脸图片转换成灰度矩阵;
将所述灰度矩阵切割为预定数量的小矩阵;
对所述切割后的小矩阵进行降纬处理。
本申请实施例采取的技术方案还包括:所述BP神经网络采用tansig函数作为所述输入层与隐含层的传递函数,采用purelin线性函数作为所述隐含层与输出层的传递函数,采用Sigmoid函数作为所述输入层到隐含层的激活函数,采用Purelin线性函数作为所述隐含层到输出层的激活函数。
本申请实施例采取的技术方案还包括:所述输出层节点数为人脸的类别数,所述隐含层节点数为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011284648.8/2.html,转载请声明来源钻瓜专利网。