[发明专利]一种学习函数与kriging模型结合的自适应结构可靠性分析方法有效
申请号: | 202010637280.2 | 申请日: | 2020-07-03 |
公开(公告)号: | CN111783209B | 公开(公告)日: | 2022-09-27 |
发明(设计)人: | 李国发;陈泽权;何佳龙;霍津海 | 申请(专利权)人: | 吉林大学 |
主分类号: | G06F30/13 | 分类号: | G06F30/13;G06F30/20 |
代理公司: | 北京清大紫荆知识产权代理有限公司 11718 | 代理人: | 彭一波 |
地址: | 130012 吉*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 学习 函数 kriging 模型 结合 自适应 结构 可靠性分析 方法 | ||
本公开实施例中提供了一种学习函数与kriging模型结合的自适应结构可靠性分析方法,包括获取结构的功能函数g(x),并获取影响结构功能函数的变量x及其分布信息;在采样空间内抽取N个候选样本点,并再次抽取nL个初始随机样本点,组成训练集ζ;根据训练集ζ获取函数值Y,利用kriging模型构建代理模型利用蒙特卡洛仿真方法获得当前第k次迭代时所获得的代理模型的失效概率判别是否符合收敛条件;利用学习函数自适应选择出新的样本点xnew,并将xnew并入ζ;最终获得结构的失效概率本发明在保证精度的前提下提高了收敛速度,有效避免了其他一些学习函数因以单一样本点为核心的收敛准则而引起的样本点过度添加情况,从而提高了样本点的利用效率。
技术领域
本公开涉及结构可靠性分析技术领域,尤其涉及一种学习函数与kriging模型结合的自适应结构可靠性分析方法。
背景技术
在结构可靠性分析领域,最为简单的是蒙特卡洛仿真方法,无论结构的功能函数非线性程度的高低,维度大少,蒙特卡洛仿真方法都能稳健地估计出结构的失效概率的精确值,但是蒙特卡洛仿真方法计算量庞大,而且计算量随着维数的增加而出现爆炸式增长。更进一步,在工程实际中,更多地需要调用有限元仿真的结构才能获取结构功能函数的响应值,这使得蒙特卡洛仿真方法的整体计算量进一步增大。针对这一情况,基于计算最大可能点的一阶可靠性分析方法与二阶可靠性分析方法因为具有计算简单且计算效率高,以及在一些简单线性的问题上拥有不俗的精度的优点,得到广泛的应用与进一步的拓展。但是,对于强非线性的,拥有较高维度输入或者功能函数为隐式的情况下,又或者结构拥有多个最大可能点的情况下,一阶可靠性方法与二阶可靠性方法所得到的结果不够准确,精度远远无法满足实际的工程应用。
由于蒙特卡洛仿真方法、一阶可靠性分析方法与二阶可靠性分析方法存在上述的问题,需要发展更多的新型的结构可靠性分析方法,其中代理模型方法得到越来越多的关注与研究,目前已成为结构可靠性领域的一大热门研究方向。代理模型方法通过少量样本点,利用一个黑匣子模型,通过拟合实际的输入输出,从而建立一个计算量小的“代理模型”,通过这一个黑匣子模型来模拟和预估实际复杂模型的输入输出关系。目前存在着多种代理模型,其中比较常见的有多项式响应面,人工神经网络,支持向量机,多项式混沌展开,kriging模型等等。尽管基于代理模型的结构可靠性分析方法多种多样,但基本上都是通过代理模型对结构的功能函数进行拟合、近似,然后结合蒙特卡洛仿真方法或者其他抽样方法进行失效概率的仿真分析。
在众多的代理模型中,kriging模型由于是基于高斯过程的代理模型,具有误差估计功能,能够实现通过当前已有的插值点,估计出未知点的均方差。这一特性使得kriging模型这类高斯过程代理模型实现了基于历史数据来驱动样本点加入的功能。kriging模型通过适定的学习函数,逐步、自适应地指导样本点的加入,再利用新的样本点集合重新构造一个新的kriging模型,从而使得代理模型的精度逐渐提高。这有效避免了在构造代理模型时,人为构造的样本点集合所造成的样本点不足导致精度不够,或者样本点过多导致计算资源浪费等问题。
对于利用kriging模型进行自适应结构可靠性分析,适定的学习函数是必要的。一个合适的,适用于结构可靠性分析的学习函数能高效高精度且稳健地实现对结构失效概率的估计。所以提出一种新型的适用于结构可靠性分析的学习函数对结构可靠性分析,尤其是结合kriging模型的自适应结构可靠性分析领域具有重要意义。
发明内容
有鉴于此,本发明的主要目的是提出一种学习函数与kriging模型结合的自适应结构可靠性分析方法,旨在能实现高效高精度且稳健地对结构失效概率进行估计。
本发明所提的一种新型的学习函数与kriging模型结合的自适应结构可靠性分析方法,包括以下步骤:
1.分析待评估失效概率的结构的组成、功能和工况条件,确定该结构的失效模式与对应的功能函数,并获取影响结构功能函数的变量及其分布信息;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吉林大学,未经吉林大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010637280.2/2.html,转载请声明来源钻瓜专利网。