[发明专利]基于图卷积模型的信号分类方法在审
申请号: | 202010323837.5 | 申请日: | 2020-04-22 |
公开(公告)号: | CN111507293A | 公开(公告)日: | 2020-08-07 |
发明(设计)人: | 陈晋音;李玉玮;贾澄钰;林翔 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 曹兆霞 |
地址: | 310014 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 图卷 模型 信号 分类 方法 | ||
1.一种基于图卷积模型的信号分类方法,其特征在于,所述信号分类方法包括以下步骤:
(1)采集一定时间序列长度的调制信号,并对所述调制信号进行预处理,获得多维调制信号数据;
(2)利用训练好的长短期记忆网络提取所述多维调制信号数据的特征,以保证当前时刻特征与之前时刻调制信号数据相关;
(3)利用提取的特征构建信号的图结构表示信息;
(4)以信号的图结构表示信息和所述多维调制信号数据作为训练好的图卷积网络的输入数据,利用图卷积网络提取输入数据的特征;
(5)利用训练好的全连接网络对所述输入数据的特征进行分类,获得信号分类结果。
2.如权利要求1所述的基于图卷积模型的信号分类方法,其特征在于,步骤(1)中,
对所述调制信号进行同相正交分量分解,以实现对调制信号的预处理,分解结果即为多维调制信号数据。
3.如权利要求1所述的基于图卷积模型的信号分类方法,其特征在于,步骤(2)中,通过保存前一时刻的网络状态来计算前一时刻的网络状态对当前时刻提取特征的影响程度,以保证系统的因果关系,具体利用训练好的长短期记忆网络提取所述多维调制信号数据的特征包括:
ft=σ(Wf·[ht-1,xt]+bf)
it=σ(Wi·[ht-1,xt]+bi)
ot=σ(Wo·[ht-1,xt]+bo)
ht=ot*tanh(Ct)
其中,xt表示信号t时刻的输入数据,ht-1表示信号t-1时刻的输出特征,[,]表示级联,σ(·)和tanh(·)表示激活函数,保证网络的非线性,W和b表示需要训练的参数权重,Wf和bf分别表示LSTM遗忘门的参数,ft是一个0-1之间的向量,表示上一个时刻网络状态Ct-1对当前时刻提取特征的关联程度,0表示无关联,1表示关联程度的最大值,it表示当前t时刻的输入数据对特征的影响程度,Wi和bi分别表示输入门的参数,表示当前时刻网络状态的初始值,WC和bC分别表示计算状态的参数,Ct表示当前时刻网络的状态,ot表示输出当前时刻特征的激活概率,Wo和bo分别表示输出门的参数ht表示当前时刻信号的输出特征。
4.如权利要求1所述的基于图卷积模型的信号分类方法,其特征在于,步骤(3)中,根据LSTM提取的特征H∈RT×d构建信号的图结构表示信息及其邻接矩阵A∈RT×T,首先对每个时刻特征进行归一化,再计算两两时刻特征之间的相似度,其计算公式为:
A=H′H′T
其中,H′T表示H′特征的转置,A表示信号图结构的邻接矩阵,节点表示信号的各个时刻,连边表示两个时刻之间特征的相似性,相似性越高,存在连边的可能性越大。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010323837.5/1.html,转载请声明来源钻瓜专利网。