[发明专利]生成对抗神经网络训练过程的对抗优化方法在审
申请号: | 202010113638.1 | 申请日: | 2020-02-24 |
公开(公告)号: | CN111401138A | 公开(公告)日: | 2020-07-10 |
发明(设计)人: | 裴颂文;沈天马 | 申请(专利权)人: | 上海理工大学;云雾网联(苏州)智能科技有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 上海申汇专利代理有限公司 31001 | 代理人: | 徐颖 |
地址: | 200093 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 生成 对抗 神经网络 训练 过程 优化 方法 | ||
1.一种生成对抗神经网络训练过程的对抗优化方法,其特征在于,具体包括如下步骤:
1)将图像数据训练集和随机噪声送入对抗神经网络中生成器,生成器输出的生成数据作为攻击样本和图像数据的真实数据成为两个数据集X和Y,两个数据集输入到生成器中的判别器D中,计算X的概率密度ρX和Y的概率密度ρY,求解真实数据和生成数据概率密度的最大似然估计最大值,计算真实数据和生成数据的测度,从而求解椭圆型Monge-Ampere偏微分方程的数值解,得到真实数据分布和生成数据分布之间的最佳映射,通过计算生成器的损失函数,对生成器进行训练,在生成器中构成攻击网络,最终得到攻击样本与真实数据的最优映射U,完成攻击网络训练;
2)将步骤1)训练后的判别器D加入对抗神经网络中防御网络,将图像数据训练集和随机噪声送入对抗神经网络中生成器,生成器输出数据作为防御网络的输入数据,通过蒙日安培方程的解和最优传输理论得到的防御网络损失函数来训练防御网路,在训练防御网络的过程中,通过克服最优映射的损失函数,防御网络能获得两个测度之间的最大距离,最终通过迭代训练可以得到防御网络的输出值,即得到过滤后的安全样本。
2.根据权利要求1所述生成对抗神经网络训练过程的对抗优化方法,其特征在于,所述生成器的损失函数为:
其中x,y对应集合X和Y内的点;Ex~Px为真实数据概率分布的期望;Ey~Py为攻击样本数据概率分布的期望;为Licpschiz连续数据的期望;Dw为带有权重的判别器网络;D为判别器网络;G为生成器网络;λ为惩罚系数,是训练网络设置的超参数,E为期望;
防御网络的损失函数为:
m为网络每个维度内离散点数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海理工大学;云雾网联(苏州)智能科技有限公司,未经上海理工大学;云雾网联(苏州)智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010113638.1/1.html,转载请声明来源钻瓜专利网。