[发明专利]基于机载激光雷达点云空间分布特征的树木点云提取方法有效

专利信息
申请号: 201911265048.4 申请日: 2019-12-11
公开(公告)号: CN111060922B 公开(公告)日: 2023-04-18
发明(设计)人: 尤航凯;李世华 申请(专利权)人: 电子科技大学
主分类号: G01S17/894 分类号: G01S17/894;G01S7/48
代理公司: 电子科技大学专利中心 51203 代理人: 闫树平
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 机载 激光雷达 空间 分布 特征 树木 提取 方法
【说明书】:

发明属于机载激光雷达点云数据处理技术领域,具体涉及一种基于机载激光雷达点云空间分布特征的树木点云提取方法。本发明是通过利用机载激光雷达获取三维激光点云数据,并根据分析树木的点云分布特征与其他地物点云分布特征的不同,根据点与点之间的关系,经历点云间关系的确定、运算区域划分、计算树木点云因子数值的处理,建立基于原始激光点云从空间中提取出树木点云的方法。本发明可以摆脱树木点云提取对先验数据的依赖,克服因点云密度分布不均匀所导致的归类错误的问题,以数值计算的方式代替掉传统的逐步分离法,具有首创性和理论上的优越性,提取效果优异。

技术领域

本发明属于机载激光雷达点云数据处理技术领域,具体涉及一种基于机载激光雷达点云空间分布特征的树木点云提取方法。

背景技术

激光雷达(Light Detection And Ranging,LiDAR)是近年来发展十分迅速的主动遥感技术,主要通过测定传感器发出的激光在传感器与目标物体之间传播的距离,分析目标地物表面的反射能量大小以及反射波谱的幅度、频率和相位等信息,呈现目标物精确的三维结构信息。可以直接、快速、精确地获取研究对象的三维空间坐标,具有独特的优势。

森林是地球自然资源中的一个重要组成部分,利用遥感技术获取森林冠层结构参数是当前研究热点。机载激光雷达可以获取树木三维结构信息,为了提高运算效率和降低存储量,发展准确高效的算法提取树木点云非常必要。

国内外学者利用机载激光雷达数据已经开展了树木点云提取工作,但大多集中于森林地区。传统林区植被的测量大多通过现场测量或卫星图像进行,其中还面临着现场控制、控制点选择、图像匹配等困难。随着机载激光雷达的出现,由于其对树木等穿透物体的垂直结构具有很强的探测能力,林木三维结构参数准确反演取得了重大突破。

波佩斯库等人基于机载LiDAR点云数据,通过不断调整窗口大小进行局部过滤处理,有效地提取林区不同层次的植被信息。Blair等人利用大点激光雷达技术对热带茂密森林进行扫描和测量(覆盖率为95%),证明可以准确提取植被信息。美国宇航局开发了激光植被成像传感器(LVIS)系统,可用于森林资源的调查和管理,包括计算植被参数和森林垂直结构,如树高、树冠直径、树密度、植被生长、木材数量、树种等。庞勇等人首先对实验区的激光雷达点云数据进行分类处理,获取了地面点、植被点和高程规范化植被点三大类,然后计算出上四分位数的高度基于高程规范化的植被点,并与测得的数据进行比较,最后进行了实际分析。

但是上述方法都采用逐项分离技术,普适性较差,并且在复杂区域内的树木点云提取效果不佳。目前城区的机载雷达点云数据区分植物和其他地物通常采用人工分离或人机交互等方式。人工分离工程量巨大且繁琐,而人机交互的方式则是通过激光雷达首末次回波的强度差与高程等多种方法相结合来进行粗分离,之后再用人力来剔除一些异常点云数据。人机交互的方法虽然比纯人工效率高了不少,但是对于不同的数据仍需要进行针对性的参数调整,这种方法依赖雷达回波强度差值的准确性以及对城市建筑结构的先验知识,也缺乏普适性。

发明内容

针对上述存在的问题或不足,本发明提供了一种基于机载激光雷达点云空间分布特征的树木点云提取方法,即基于原始激光雷达点云数据,通过目标点与周围点云的分布函数运算得到目标点的离散程度值,再通过每个点的离散程度值来进行树木点的判定。

本发明具体技术方案如下:

步骤一、确定目标点与运算点的加权距离影响因子,其中原始点云数据指的是原始数据中的所有点云数据,目标点指的是当前处理的点,运算点指的是原始点云数据中除了目标点本身并与目标点计算的点;

(1)确定目标点与运算点的正投影欧式距离。

设目标点P0正投影坐标为(x0,y0),运算点Pi正投影坐标为(xi,yi),则目标点与运算点的正投影欧式距离Distanceoi:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201911265048.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top