[发明专利]基于数据隐私保护的机器学习模型特征筛选方法及装置有效
申请号: | 201911195304.7 | 申请日: | 2019-11-28 |
公开(公告)号: | CN111062487B | 公开(公告)日: | 2021-04-20 |
发明(设计)人: | 陈超超;王力;周俊 | 申请(专利权)人: | 支付宝(杭州)信息技术有限公司 |
主分类号: | G06N20/00 | 分类号: | G06N20/00;G06K9/62;G06F17/18 |
代理公司: | 北京永新同创知识产权代理有限公司 11376 | 代理人: | 林锦辉 |
地址: | 310000 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 数据 隐私 保护 机器 学习 模型 特征 筛选 方法 装置 | ||
本说明书实施例提供用于基于数据隐私保护的机器学习模型特征筛选的方法。机器学习模型具有模型特征集,并且机器学习模型的特征数据被垂直切分地分布在第一数据拥有方和至少一个第二数据拥有方处,每个数据拥有方具有与模型特征集的模型特征子集对应的特征数据。第一数据拥有方具有待筛选模型特征的特征数据,第二数据拥有方不具有待筛选模型特征的特征数据。第一数据拥有方和至少一个第二数据拥有方协同来使用各自的特征数据进行多方安全计算,以训练出待筛选模型特征的预测模型。在第一数据拥有方处,基于待筛选模型特征的预测差值确定待筛选模型特征的方差膨胀因子,以进行模型特征筛选处理。
技术领域
本说明书的实施例通常涉及计算机领域,更具体地,涉及基于数据隐私保护的机器学习模型特征筛选方法及装置。
背景技术
在公司或企业进行业务运营时,通常会使用机器学习模型来进行模型预测,以例如确定业务类别、业务运营风险或者进行业务运营决策。机器学习模型例如可以包括业务风险识别模型、业务分类模型、业务决策模型等等。机器学习模型通常会使用大量的模型特征作为模型输入特征,例如,机器学习模型可能会使用多达上万个模型特征。模型特征的数量越多,机器学习模型的运算量越大,从而需要花费更多的计算资源和时间成本。
机器学习模型的模型特征通常根据经验选择,例如,由有经验的行业人员来人工选择。然而,在根据这种方式确定出的模型特征中,可能会存在对机器学习模型的模型效果影响不大的模型特征,这些模型特征的引入会增加机器学习模型的计算量,但不会提升机器学习模型的预测精度,由此,如何进行机器学习模型的模型特征筛选,成为亟待解决的问题。
发明内容
鉴于上述问题,本说明书的实施例提供了一种基于数据隐私保护的机器学习模型特征筛选方法及装置,其能够在保证多个数据拥有方的各自隐私数据安全的情况下实现模型特征筛选。
根据本说明书的实施例的一个方面,提供一种用于基于数据隐私保护的机器学习模型特征筛选的方法,所述机器学习模型具有模型特征集,所述机器学习模型的特征数据被垂直切分地分布在第一数目个数据拥有方处,每个数据拥有方具有与所述模型特征集的模型特征子集对应的特征数据,所述数据拥有方包括第一数据拥有方和第二数目个第二数据拥有方,第二数目等于第一数目减一,第一数据拥有方具有待筛选模型特征的特征数据,第二数据拥有方不具有所述待筛选模型特征的特征数据,所述方法由第一数据拥有方执行,所述方法包括:使用各个数据拥有方的特征数据,利用多方安全计算来训练出待筛选模型特征的预测模型,其中,所述预测模型是线性回归模型,所述预测模型的输出是所述待筛选模型特征的预测值,以及所述预测模型的输入特征是所述模型特征集中的剩余模型特征,所述预测模型被垂直切分为多个预测子模型,每个数据拥有方具有一个预测子模型;以及基于所述待筛选模型特征的预测差值,确定所述待筛选模型特征的方差膨胀因子,以用于模型特征筛选处理。
可选地,在上述方面的一个示例中,所述方法还可以包括:根据所述待筛选模型特征的方差膨胀因子,对所述待筛选模型特征进行模型特征筛选处理。
可选地,在上述方面的一个示例中,根据所确定出的待筛选模型特征的方差膨胀因子,对所述待筛选模型特征进行模型特征筛选处理可以包括:在所述待筛选模型特征的方差膨胀因子大于预定阈值时,从所述模型特征集中筛除所述待筛选模型特征。
可选地,在上述方面的一个示例中,所述方法还可以包括:将所述待筛选模型特征的方差膨胀因子提供给模型特征筛选方来进行模型特征筛选。
可选地,在上述方面的一个示例中,所述待筛选模型特征的预测差值是所述预测模型的训练过程中的最后一次循环过程中得到的预测差值。
可选地,在上述方面的一个示例中,所述方法还可以包括:根据各个数据拥有方的第一特征数据以及预测子模型进行多方安全计算,以得到所述待筛选模型特征的预测值和预测差值,所述第一特征数据是从各个数据拥有方的特征数据中去除与所述待筛选模型特征对应的特征值后的特征数据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于支付宝(杭州)信息技术有限公司,未经支付宝(杭州)信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911195304.7/2.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置