[发明专利]一种图像识别模型的训练方法、装置及电子设备有效
| 申请号: | 201911122421.0 | 申请日: | 2019-11-15 |
| 公开(公告)号: | CN110909784B | 公开(公告)日: | 2022-09-02 |
| 发明(设计)人: | 范音 | 申请(专利权)人: | 北京奇艺世纪科技有限公司 |
| 主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06N3/04;G06N3/08 |
| 代理公司: | 北京柏杉松知识产权代理事务所(普通合伙) 11413 | 代理人: | 项京;丁芸 |
| 地址: | 100080 北京市海淀区*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 图像 识别 模型 训练 方法 装置 电子设备 | ||
1.一种图像识别模型的训练方法,其特征在于,所述方法包括:
获取已标注图像样本和未标注图像样本;
将所述已标注图像样本和所述未标注图像样本输入待训练卷积神经网络CNN模型的特征提取层中,分别提取所述已标注图像样本的特征和所述未标注图像样本的特征;
通过将每个类别的所述已标注图像样本的特征、该已标注图像样本所属类别的权重、多个类别的权重和所述未标注图像样本的特征,输入至所述待训练CNN模型的损失层,获得所述待训练CNN模型中损失函数的损失值;
基于所述损失函数的损失值,对所述待训练CNN模型中的参数进行调整,得到训练后的CNN模型;
所述通过将每个类别的所述已标注图像样本的特征、该已标注图像样本所属类别的权重、多个类别的权重和所述未标注图像样本的特征,输入至所述待训练CNN模型的损失层,获得所述待训练CNN模型中损失函数的损失值,包括:
将第i个已标注图像样本的特征fi、所述第i个已标注图像样本的特征fi所属类别li的权重wli、第j个类别的权重wj以及所述未标注图像样本中第u个未标注图像样本的特征fu,输入至所述待训练CNN模型的损失层,以使得所述损失层通过以下公式:
计算所述待训练CNN模型中损失函数的损失值L,其中,所述n为所述已标注图像样本的总数,所述K为所述已标注图像样本的类别的总数,所述U为所述未标注图像样本的总数,所述wli和所述wj分别为预设权重向量W中的第li列向量和第j列向量,1≤li≤K;
或者,
所述通过将每个类别的所述已标注图像样本的特征、该已标注图像样本所属类别的权重、所述多个类别的权重和所述未标注图像样本的特征,输入至所述待训练CNN模型的损失层,获得所述待训练CNN模型中损失函数的损失值,包括:
将第i个已标注图像样本的特征fi、所述第i个已标注图像样本的特征fi所属类别li的权重wli、第j个类别的权重wj以及所述未标注图像样本中第u个未标注图像样本的特征fu,输入至所述待训练CNN模型的损失层,以使得所述损失层通过以下公式:
计算所述待训练CNN模型中损失函数的损失值L,其中,所述θyi=arccos(fi·wi),所述s,m分别为该损失函数中的预先设置的超参数,所述yi表示第i个已标注图像样本所属的类别,1≤yi≤K,θj=arccos(fi·wj),θu=arccos(fi·fu)。
2.根据权利要求1所述的方法,其特征在于,所述已标注图像样本为标注了类别的图像样本,所述已标注图像样本中的标注对象与所述未标注图像样本不同;
在所述通过将所述已标注图像样本的特征和所述未标注图像样本的特征输入至所述待训练CNN模型的损失层,获得所述待训练CNN模型中损失函数的损失值之前,所述方法还包括:
基于每个类别的所述已标注图像样本的类别,在所述待训练CNN模型对应的权重向量中,确定该已标注图像样本所述类别的权重,其中,所述待训练CNN模型对应的权重向量包括每个类别对应的权重,所述待训练CNN模型对应的权重向量,至少为预先设置的初始权重向量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京奇艺世纪科技有限公司,未经北京奇艺世纪科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911122421.0/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种发光二极管及其制作方法
- 下一篇:夯土装饰板及其制作方法
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序





