[发明专利]一种基于卷积神经网络的水下图像复原方法有效
| 申请号: | 201911033007.2 | 申请日: | 2019-10-28 |
| 公开(公告)号: | CN110838092B | 公开(公告)日: | 2023-05-19 |
| 发明(设计)人: | 郭继昌;茹丽;郭春乐 | 申请(专利权)人: | 天津大学 |
| 主分类号: | G06T5/00 | 分类号: | G06T5/00;G06T7/50;G06T7/90 |
| 代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 刘子文 |
| 地址: | 300072*** | 国省代码: | 天津;12 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 卷积 神经网络 水下 图像 复原 方法 | ||
本发明公开一种基于卷积神经网络的水下图像复原方法,包括以下步骤:(1)建立水下光学成像模型;(2)利用水下成像模型和现有的室内深度数据集合成训练数据;(3)建立参数估计网络,包括共享层、全局背景光估计子网络和红通道透射率估计子网络三个部分;共享层为两个子网络提取共同特征,全局背景光估计子网络和红通道透射率子网络将共享层的输出作为输入,分别映射到全局背景光和红通道透射;(4)复原水下图像;通过参数估计网络得到预测的全局背景光与红通道透射率图之后,根据水体的固有特性,计算得到蓝绿通道的透射率,最后进行水下图像的复原,即可得到清晰化的水下图像。
技术领域
本发明属于图像处理、计算机视觉技术领域,涉及一种基于卷积神经网络的水下图像复原方法。
背景技术
在人口急剧膨胀、陆地资源日益枯竭、环境不断恶化的情况下,开发海洋资源是一项影响深远,面向二十一世纪的战略选择。因此海洋信息的获取、传输和处理等理论与技术的重要性更加突显。水下图像的视觉质量在海洋工程应用和科学研究中扮演着极其重要的角色,例如水下生态研究、海洋营救、水下输油管道泄漏监视等应用场景。由于受到特殊光照吸收和散射的影响,水下拍摄的图像往往具有低对比度、有限的清晰度、失真的颜色等缺点。水下图像的这些缺点严重影响其直接应用于海洋工程和科学研究。因此,如何清晰化水下图像,使其可以更好的应用于海洋工程和科学研究已经成为了一个研究热点。
针对如何清晰化水下图像这个问题,人们主要从以下两个方面展开研究:图像增强方法和图像复原方法。图像增强方法不依靠任何成像模型,仅仅通过改变图像的像素值来提高水下图像的对比度和亮度,从而提高其视觉质量。图像复原方法将图像复原视为一种反问题,通过估计成像模型参数并采用反补偿的技术来恢复退化的水下图像,从而恢复其清晰度、颜色以及对比度。虽然水下图像增强和复原方法已经取得了一些成绩,但增强和复原的结果并不十分令人满意。例如,在复原方法中所使用的一些假设条件和先验信息在很多水下场景中并不适用;一些增强方法常常产生过度增强或者欠增强的结果。
发明内容
本发明的目的是为了克服现有技术中的不足,提供一种基于卷积神经网络的水下图像复原方法,本发明在水下成像模型的基础上,通过学习水下图像与其相对应的背景光和透射率之间的关系,研究一种能够有效修正水下图像颜色偏差、解决其对比度和清晰度低、纹理和细节丢失等问题的水下图像复原方法。
本发明的目的是通过以下技术方案实现的:
一种基于卷积神经网络的水下图像复原方法,包括以下步骤:
(1)建立水下光学成像模型;
(2)利用水下光学成像模型和现有的室内深度数据集合成训练数据;
(3)建立参数估计网络,包括共享层、全局背景光估计子网络和红通道透射率估计子网络三个部分;共享层为两个子网络提取共同特征,全局背景光估计子网络和红通道透射率子网络将共享层的输出作为输入,分别映射到全局背景光和红通道透射;
(4)复原水下图像;通过参数估计网络得到预测的全局背景光与红通道透射率图之后,根据水体的固有特性,计算得到蓝绿通道的透射率,最后进行水下图像的复原,即可得到清晰化的水下图像。
进一步的,步骤(1)中根据光在水中传播特性,水下光学成像模型表示为:
Ic(x)=Jc(x)tc(x)+Bc(1-tc(x)),c∈{r,g,b}
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911033007.2/2.html,转载请声明来源钻瓜专利网。





