[发明专利]一种基于密度聚类的热点路径分析方法有效

专利信息
申请号: 201910231648.2 申请日: 2019-03-26
公开(公告)号: CN110135450B 公开(公告)日: 2020-06-23
发明(设计)人: 徐欣;刁联旺;易侃;李青山 申请(专利权)人: 中电莱斯信息系统有限公司
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 江苏圣典律师事务所 32237 代理人: 胡建华;于瀚文
地址: 210007 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 密度 热点 路径 分析 方法
【说明书】:

发明公开了一种基于密度聚类的热点路径分析方法,针对将目标路径表征为由若干路径点构成的路径点集合,构建相似度距离矩阵,比较两两路径点集合之间的相似度,基于相似度距离矩阵、距离门限ε与密度门限MinPts采用密度聚类迭代式地计算路径点集合构成的簇,最后将各簇的路径集众数的作为目标热点路径输出。本发明的优点:(1)提出了针对目标路径点集合的相似度比较方法;(2)密度门限MinPts的选择具有一定的灵活性、鲁棒性;(3)计算成本低,实现方法工程化。

技术领域

本发明涉及目标路径分析挖掘领域,尤其涉及一种基于密度聚类的热点路径分析方法。

背景技术

众所周知,当今目标路径相关测量数据量越来越大,仅靠人工进行分析处理难以及时、准确的总结出目标路径规律,难以及时支撑高实时的辅助决策。传统的目标路径分析预测技术大多针对目标位置测量数据,没有基于关键路径点进行分析,无法聚焦高层次的路径特征、提取多粒度的目标路径模式,计算成本高。

发明内容

发明目的:针对现有技术的问题,本发明提出一种基于密度聚类的热点路径分析方法,包括如下步骤:

步骤1,针对将目标路径表征为由若干路径点构成的路径点集合,构建相似度距离矩阵;

步骤2,比较两两路径点集合之间的相似度,基于相似度距离矩阵、距离门限ε与密度门限MinPts从路径点集合中挖掘出核心路径集,再根据针对核心路径集的“直接密度可达”关系,采用密度聚类迭代式地生成由核心路径集聚合成的簇;

步骤3,将各簇的路径点集合众数作为目标热点路径输出。

相比传统密度聚类中的相似度距离矩阵,步骤1中矩阵的行、列对应的不再是固定维数的向量,而是非固定长度的路径点集合,步骤1包括:

步骤1-1,设定采集了n条目标路径相对应的n个路径点集合,每个路径点集合对应一条目标路径,而路径点集合中的每个元素为对应目标路径中的一个路径点,则定义第i个路径点集合Pi和第j个路径点集合Pj之间的Jaccard距离JaccardDist(Pi,Pj)为:

步骤1-2,对路径点集合排序:将n个路径点集合首先按集合大小由大到小、其次按索引值由小到大排序,记为P1、P2、…、Pn,满足|P1|≥|P2|≥…≥|Pn|;

步骤1-3,初始化相似度距离矩阵:设定距离门限ε,其取值范围为0ε1,一般情况下可以取值为路径点集合最近邻距离的均值,即:

初始化相似度距离矩阵DistArray为空,其矩阵大小n×n,即矩阵的行数和列数均为n,因为相似度距离矩阵关于多角线对称,所以只保留上三角部分。

步骤2创新性地提出了一种基于路径点集合大小与距离门限ε的相似度比较策略(步骤2-3),大大简化了两两路径点集合的相似度比较计算成本,并在集合型相似度距离计算的基础上进一步创新性地提出了针对路径点集合的“ε邻域”、“核心路径集”、“直接密度可达”、“间接密度可达”、“密度相连”的概念(步骤2-8、2-9),从而将传统针对固定维数向量的密度聚类规则拓展到集合型数据上,步骤2包括:

步骤2-1,设置当前集合索引:设置当前路径点集合索引s=1;

步骤2-2,设置待比较集合索引:设置待比较路径点集合索引t=s+1;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中电莱斯信息系统有限公司,未经中电莱斯信息系统有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910231648.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top