[发明专利]全氮化钛集流体/电极超级电容器及其制备方法有效
| 申请号: | 201910056547.6 | 申请日: | 2019-01-22 |
| 公开(公告)号: | CN109659156B | 公开(公告)日: | 2020-02-18 |
| 发明(设计)人: | 周大雨;孙纳纳;杨旭;马晓倩 | 申请(专利权)人: | 大连理工大学 |
| 主分类号: | H01G11/28 | 分类号: | H01G11/28;H01G11/30;H01G11/68;H01G11/84;H01G11/86 |
| 代理公司: | 大连理工大学专利中心 21200 | 代理人: | 李晓亮;潘迅 |
| 地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 氮化 流体 电极 超级 电容器 及其 制备 方法 | ||
一种全氮化钛集流体/电极超级电容器及其制备方法,属于新能源材料与器件技术领域。首先,清洗去除衬底表面的杂质;然后在衬底表面沉积一层具有高致密度、高导电性的TiN薄膜作为电子输运集流体材料,再通过调控沉积工艺参数改变薄膜表面原子扩散和形核生长等机制,在集流体上直接继续生长一层疏松多孔、低导电性的TiN薄膜作为电极材料。本发明集流体和电极同为TiN连续生长,通过简单地改变薄膜沉积工艺参数对材料的性能进行剪裁,工艺简便易行、成本低,薄膜沉积技术选择种类多、工艺适用性强,解决了异类集流体和电极材料间附着力差、晶格失配和热膨胀系数差异导致分层开裂以及接触电阻大的问题,将极大提高超级电容器的功率密度、热稳定性和长期服役可靠性。
技术领域
本发明属于新能源材料与器件技术领域,涉及一种全氮化钛集流体/电极超级电容器及其制备方法。
背景技术
超级电容器因具有高能量和功率密度、较快的充放电速度、超长循环寿命、宽泛的工作温度、免维修和环保无污染等突出优势,在微电子产品储能器件方面具有很大的应用前景。超级电容器按储能机理不同可分为两大类,一种是双电层电容器是靠电解液与电极界面上形成的双电层结构来存储电能;另一种是赝电容电容器是由电解液与电极之间发生氧化还原反应产生电荷转移存储能量。超级电容器主要有集流体、电极和电解液组成,其中电极材料和集流体是决定其电化学性能的关键因素。目前,常见的电极材料主要有碳基材料、硅基材料、金属氧化物和导电聚合物等。这些材料一般采用直接沉积或与导电剂、粘结剂混合后涂覆到Au、Cu或泡沫镍等金属集流体上。电极材料的功能是利用双电层或者赝电容效应实现电荷的存储和释放,而集流体的功能是输运电子以及连接充放电电路。由于电极与集流体为不同种类的材料,异类材料间附着力差,同时晶格失配和热膨胀系数差异会导致分层开裂以及接触电阻大,这些问题严重限制了超级电容器的倍率特性、频率响应和功率密度等性能提升。TiN薄膜具有熔点高、硬度大、耐磨损,抗氧化、耐腐蚀等优秀的理化性质,特别是其导电性能具有极宽的分布调控范围。通过改变沉积工艺参数调控TiN薄膜的成分化学计量比和微观组织结构,可以实现电阻率从几十到几千μΩ.cm薄膜的可控制备。在当前的微电子工业中,高导电性的TiN和TaN薄膜是最为普遍应用的晶体管栅电极和DRAM存储电容器电极材料。近年来,法国学者报道了多孔结构的高电阻率(ρ>1000μΩ.cm)TiN和VN薄膜具有与碳基、石墨烯基、和过渡金属氧化物电极材料相媲美的高比电容值,但在所制备的超级电容器中上述薄膜既作为电极材料又同时作为集流体,由于薄膜具有较高的电阻率,同样导致了频率响应(倍率)特性较差的问题。
基于TiN薄膜的导电性能灵活可控的独特性质,本申请提出一种全新的超级电容器制备方法:首先在衬底上沉积高导电性(ρ<500μΩ.cm)TiN薄膜作为电子输运集流体,随后通过简单调整沉积工艺参数在集流体上直接继续生长多孔结构、高电阻率(ρ>1000μΩ.cm)TiN薄膜作为电极材料。该技术方法具有以下优点:集流体和电极同为TiN连续生长,通过简单地改变薄膜沉积工艺参数对材料的性能进行剪裁,工艺简便易行、成本低,薄膜沉积技术选择种类多、工艺适用性强,解决了异类集流体和电极材料间附着力差、晶格失配和热膨胀系数差异导致分层开裂以及接触电阻大的问题,将极大提高超级电容器的功率密度、热稳定性和长期服役可靠性。
发明内容
本发明的目的在于为超级电容器提供一种氮化钛集流体/电极材料及其制备新技术。集流体和电极同为TiN连续生长,通过简单地改变薄膜沉积工艺参数对材料的性能进行剪裁。该技术工艺简便易行、成本低,薄膜沉积技术选择种类多、工艺适用性强。
为了达到上述目的,本发明的技术方案为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910056547.6/2.html,转载请声明来源钻瓜专利网。





