[发明专利]一种基于脉冲神经网络的特征分类方法及系统在审
申请号: | 201810936803.6 | 申请日: | 2018-08-16 |
公开(公告)号: | CN109102027A | 公开(公告)日: | 2018-12-28 |
发明(设计)人: | 王上 | 申请(专利权)人: | 王上 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46 |
代理公司: | 北京酷爱智慧知识产权代理有限公司 11514 | 代理人: | 向霞 |
地址: | 400000 重庆市沙坪坝*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 神经元 隐含层 输入层 输出 脉冲神经网络 分类 本质特征 特征分类 输出层 反向递归算法 分类结果 分类事务 时间分类 数据传递 数据通过 数据组成 数据组合 通用性强 事物 权重 标注 查找 传递 | ||
1.一种基于脉冲神经网络的特征分类方法,其特征在于,
设置输入层每个神经元的输入数据,所述输入数据由本质特征数据和量的数据组成,将输入层的神经元数据传递到到隐含层;
隐含层通过对输入的不同神经元的数据组合进行计算得到隐含层的每个神经元的输出值,并将隐含层的输出值传递到输出层;
输出层将输入层和隐含层的各个神经元的输出的量的数据进行对比计算,选择并标注出最大值神经元的数据作为分类结果。
2.如权利要求1所述的基于脉冲神经网络的特征分类方法,其特征在于,所述本质特征数据为信号幅度,所述量的数据为信号频率。
3.如权利要求2所述的基于脉冲神经网络的特征分类方法,其特征在于,所述隐含层包括数据特征组合层和特征分类层,将输入层的每个神经元视为形成区域组合的基础要素,所述数据特征组合层将不同位置的多个神经元进行区域组合形成角、线、面、弧特征单元;所述特征分类层将所述不同的区域组合形成角、线、面、弧特征数据与设定的阀值进行对比,输出区域组合位置的角、线、面、弧基础特征。
4.如权利要求3所述的基于脉冲神经网络的特征分类方法,其特征在于,所述隐含层还包括特征分类组合层和特征分类对比层;所述特征分类组合层将由多个区域组合位置的角、线、面、弧基础特征形成不同图形,所述特征分类对比层将形成不同图形的基础特征数据与设定的阀值进行对比,输出组成不同图形的特征神经元的位置特征数据和量的数据。
5.如权利要求4所述的基于脉冲神经网络的特征分类方法,其特征在于,所述隐含层还包括差分输出层,所述差分输出层将组成不同图形的特征神经元的位置特征数据和量的数据与邻近的特征神经元进行差分比较,输出频率不同的特征神经元。
6.一种脉冲神经网络系统,其特征在于,包括输入层、隐含层和输出层,所述输入层用于将每个神经元的输入数分解为本质特征数据和量的数据,将神经元数据传递到到隐含层;所述隐含层对输入的不同神经元的数据组合进行计算得到隐含层的每个神经元的输出值,并将隐含层的输出值传递到输出层;所述输出层用于将输入层和隐含层的各个神经元的输出的量的数据进行对比计算,选择并标注出最大值神经元的数据作为分类结果。
7.如权利要求6所述的脉冲神经网络系统,其特征在于,所述本质特征数据为幅度数据,所述量的数据为频率数据。
8.如权利要求7所述的脉冲神经网络系统,其特征在于,所述隐含层包括数据特征组合层和特征分类层,将输入层的每个神经元视为形成区域组合的基础要素,所述数据特征组合层用于将不同位置的多个神经元进行区域组合形成角、线、面、弧特征单元;所述特征分类层用于将所述不同的区域组合形成角、线、面、弧特征数据与设定的阀值进行对比,输出区域组合位置的角、线、面、弧基础特征。
9.如权利要求8所述的脉冲神经网络系统,其特征在于,所述隐含层还包括特征分类组合层和特征分类对比层;所述特征分类组合层将由多个区域组合位置的角、线、面、弧基础特征形成不同图形,所述特征分类对比层将形成不同图形的基础特征数据与设定的阀值进行对比,输出组成不同图形的特征神经元的位置特征数据和量的数据。
10.如权利要求9所述的脉冲神经网络系统,其特征在于,所述隐含层还包括差分输出层,所述差分输出层将组成不同图形的特征神经元的位置特征数据和量的数据与邻近的特征神经元进行差分比较,输出频率不同的特征神经元。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于王上,未经王上许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810936803.6/1.html,转载请声明来源钻瓜专利网。