[发明专利]基于自然语言描述的视频监控行人搜索的注意力模型方法有效
申请号: | 201810844117.6 | 申请日: | 2018-07-27 |
公开(公告)号: | CN109190471B | 公开(公告)日: | 2021-07-13 |
发明(设计)人: | 冀中;李晟嘉 | 申请(专利权)人: | 天津大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 杜文茹 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 自然语言 描述 视频 监控 行人 搜索 注意力 模型 方法 | ||
一种基于自然语言描述的视频监控行人搜索的注意力模型方法,利用融合的特征向量形成的注意力权重对图像特征向量进行注意力加权,得到文本与图像之间的联系程度。与此同时,利用文本特征向量形成的注意力权重对该文本进行注意力加权,得到该文本的重要程度。将文本与图像之间的联系程度与该文本的重要程度相乘后得到注意力评价分数。本发明使用三种不同的注意力加权方式,更有效的突出每个单词文本向量的重要程度以及提高了特征向量的代表性和有效性,可以更加充分有效的使用特征向量。可以充分的利用特征向量中有效的特征,提高训练和测试的效果。可以解决一些人工智能,机器学习以及基于自然语言描述的视频监控行人搜索等相关方面的工作和问题。
技术领域
本发明涉及一种视频监控行人搜索的注意力模型方法。特别是涉及一种基于自然语言描述的视频监控行人搜索的注意力模型方法。
背景技术
随着人工智能和深度学习的不断发展,人们对于人工智能和深度学习领域的要求也越来高。从图像和文本中提取的特征向量以及有效使用这些特征向量对于深度学习的训练和测试过程十分的重要,甚至可以起到决定性的作用。为了可以使深度学习可以更加有效的使用特征向量,人们提出了许多注意力模型并被广泛应用于各种类型不同的深度学习任务中,例如图像分类,图像识别和字幕生成等。与此同时,在基于属性的视频监控行人搜索领域中,不同种类的注意力模型也经常被使用。
相对于广泛使用的基于属性的行人搜索,利用人类自然语言描述进行视频监控行人搜索更有利于实际场景的使用,但是实现的难度也要高于基于属性的行人搜索。在基于人类自然语言描述的视频监控行人搜索任务中,现有的注意力模型算法的效果并不理想。
发明内容
本发明所要解决的技术问题是,提供一种可以充分有效的使用特征向量而达到更好的行人搜索结果的基于自然语言描述的视频监控行人搜索的注意力模型方法。
本发明所采用的技术方案是:一种基于自然语言描述的视频监控行人搜索的注意力模型方法,包括如下步骤:
1)设由卷积神经网络提取的第n张图像特征向量为In;第n张图像对应的自然语言描述中含有若干个单词;第k个单词的文本特征向量为图像特征向量In和文本特征向量融合得到的融合向量为
2)将所述的融合向量输入到全连接层中进行训练,得到向量即:
其中,为融合向量的权重矩阵,为图像特征向量In和文本特征向量所对应的融合向量的偏置向量;
3)将向量输入神经网络的Softmax层中进行归一化,并计算权重值Sn,将所有权重值作为元素构成注意力向量即:
其中,注意力向量中共有j个元素xj,为注意力向量中第i个元素的权重;
4)将第k个单词的文本特征向量为输入到全连接层中进行训练,得到向量即:
其中,为第n张图像和第k个单词对应的文本特征向量的权重矩阵,为第n张图像和第k个单词对应的文本特征向量的偏置向量;
5)将向量输入神经网络的Softmax层中进行归一化,并计算权重值TSn,将所有权重值作为元素构成注意力向量即
其中,注意力向量中共有j个元素zj,为注意力向量中第i个元素的权重;
6)将注意力向量与文本特征向量进行内积运算,得到经过注意力向量加权的标量分数--文本的重要程度即:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810844117.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种疲劳驾驶监测方法及系统
- 下一篇:基于姿势显著性的人体动画关键帧提取方法