[发明专利]基于视频技术的人体动作视频识别方法在审

专利信息
申请号: 201810684217.7 申请日: 2018-06-28
公开(公告)号: CN108985354A 公开(公告)日: 2018-12-11
发明(设计)人: 佘本龙 申请(专利权)人: 四川铭利达科技有限公司
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 638500 四川*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 视频 人体动作 视频技术 视频识别 图块 人体动作识别 采集 迭代训练 动作识别 分类模型 计算过程 时空特征 特征参数 语义信息 真实场景 度计算 多层级 加权和 区分性 显著度 显著图 帧图像 自动地 参量 多层 体素 光照 噪声 抽取 筛选 分割 拍摄 融合
【说明书】:

发明中公开了一种基于视频技术的人体动作视频识别方法,包括以下步骤:1)采集视频,对采集的视频进行多层级过分割;2)对视频的各帧图像进行显著图计算,计算过程中将时空特征参数和真实场景特征参数作为参量;3)提取视频的判别性图块,根据显著度加权和判别性图块的位置对视频超体素进行判别度计算,得到视频的判别性区域;4)采用融合各层的判别性区域,对视频进行多层表示;采用SVM支持向量机分类模型进行训练和人体动作识别。通过迭代训练和筛选过程,自动地提取视频中有代表性和区分性的区域;同时抽取视频中的语义信息,可有效消除光照、拍摄角度和噪声等影响,提高动作识别的准确性。

技术领域

本发明涉及视频识别技术领域,特别涉及一种基于视频技术的人体动作视频识别方法。

背景技术

随着互联网及数码设备的日益普及,视频的内容分析和处理受到各界的广泛关注。其中,基于视频的人体动作识别方法在近年来被广泛应用于各个领域,成为热门的研究方向。但是该研究方向还存在许多挑战,比如较大的人体动作的自由度、拍摄的背景环境差异、相机的移动和缩放、拍摄角度变化、视频中的噪声和遮挡等,都会对识别的准确性造成影响。目前这对人体动作的视频表示方法包括:1)基于全局特征描述的方法和基于局部特征描述的方法;在图像中运用背景减除或目标跟踪的方式定位到运动的人体,进而提取人体的特征来对图像序列进行表示。这种表示方式能够囊括图像序列的大部分信息,因此,对图像的描述比较准确;但基于全局特征描述的方法还存在很多缺陷:如过分依赖精确的定位、背景减除和跟踪技术,当运动背景较复杂,或对运动物体的跟踪不精确时,都会影响运动人体的提取,进而影响动作的描述;并且其对视角的变化、噪声和遮挡等干扰更敏感。基于局部特征描述的表示方法则将观察部分表示为一系列独立单元的集合,这类方法对于噪声和部分遮挡不敏感,并没有严格要求使用背景消除或跟踪算法。但是,该方法需要在图像或视频中提取足量的感兴趣点。

发明内容

本发明的目的在于解决现有技术中存在的上述技术问题,提供一种基于视频技术的人体动作视频识别方法,其基于判别性区域提取方法,可有效提高识别准确率,并可有效消除复杂背景的干扰。

为解决上述技术问题,本发明采用的技术方案如下:

基于视频技术的人体动作视频识别方法,包括以下步骤:

1)采集视频,对采集的视频进行多层级过分割;将一个视频序列分割成多个超体素,在分割时对分割的精细度进行调整;

2)对视频的各帧图像进行显著图计算,计算过程中将时空特征参数和真实场景特征参数作为参量;

3)提取视频的判别性图块,根据显著度加权和判别性图块的位置对视频超体素进行判别度计算,得到视频的判别性区域;

4)采用融合各层的判别性区域,对视频进行多层表示;采用SVM支持向量机分类模型进行训练和人体动作识别。

上述技术方案中,进一步地,所述步骤3)中,得到视频的判别性区域的处理流程为:

对视频库中的视频进行划分,分别P1和P2两类,将P1类视频库中的视频分为两部分,分别为S1和S2;将视频进行关键帧提取,在关键帧上进行图块采样,将图块采用方向梯度直方图特征进行表示,将P1的所有图块使用K-means法聚为K类;通过一个迭代过程,用聚类后的每个类的成员训练一个该类的SVM模型;在迭代结束后,能够得到数个SVM模型,每一个模型对应一个象征性的图块,当需要提取视频的判别性区域块时,只需要将视频帧进行图块分割,计算图块在每个SVM模型上的得分值,若在任意一模块上的得分值高于某一阈值,则认为该图块是判别性的图块。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川铭利达科技有限公司,未经四川铭利达科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810684217.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top