[发明专利]一种基于深度置信网络的水体氨氮预测方法及装置有效
申请号: | 201810482608.0 | 申请日: | 2018-05-18 |
公开(公告)号: | CN108710974B | 公开(公告)日: | 2020-09-11 |
发明(设计)人: | 陈英义;成艳君;程倩倩;刘烨琦;方晓敏;龚川洋;于辉辉 | 申请(专利权)人: | 中国农业大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06K9/62;G06N3/08 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 王莹;吴欢燕 |
地址: | 100193 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 置信 网络 水体 预测 方法 装置 | ||
本发明提供一种基于深度置信网络的水体氨氮预测方法及装置,所述方法包括:基于目标水体水质的实际水质参数和实际环境因子参数,利用预先建立的深度置信网络预测模型,预测所述目标水体的氨氮含量;其中,所述深度置信网络预测模型为预先根据预测需求进行初始化,并利用选取的样本数据,进行基于暂时抛弃点dropout的训练和测试获取的,所述样本数据为样本水质环境参数与样本水体氨氮含量对。本发明简单易行,能够有效提高水体氨氮含量的预测运算速度和预测精度,并有效改善预测方法的稳定性和普适性。
技术领域
本发明涉及计算机技术领域,更具体地,涉及一种基于深度置信网络的水体氨氮预测方法及装置。
背景技术
随着水产养殖进入精养化阶段,水质管理成为水产养殖业最为关心的问题。影响水质的因素有生物、物理及化学等多方面因素,例如:水温、pH值、水质氨氮及溶解氧等,其中水质氨氮更是检测水质的主要关键指标之一。
水体中的氨氮是单循环中的重要组成部分,对水产养殖对象具有生物毒害,其进入水生生物体内后,会使其表现出呼吸困难、抵抗力下降及不进食等现象,进而影响到水产品的质量和产量,严重时可导致大批养殖生物死亡,给养殖户带来经济损失。因此深入研究养殖池塘中水质氨氮的变化规律,以准确预测其变化并将预测结果应用在生产过程指导中,在池塘养殖过程中将水质氨氮控制在合理的范围内,进而对防范水体恶化、提高养殖产品质量、预防病害风险的发生和提高养殖效益具有重要意义。
池塘中氨氮的来源主要是肥料和饲料,而影响其含量的因素有很多,如pH、溶解氧、水温和氧化还原电位等都会引起水质氨氮含量的变化,且各因素之间相互影响,检测复杂困难且数据冗余度高。因此,池塘水质氨氮的变化趋势具有明显的非线性特点,没有直观规律可循。水质氨氮变化涉及多个方面,其中许多变化原理尚不明确,很难从机理上建模。
目前,应用于水质参数预测的方法主要有灰色系统理论、BP神经网络及其组合模型等,但也仅限于环境水体指标分析检测。灰色理论模型可以用来处理样本量少且信息不全的数据,但在原始数据序列变化不呈指数规律、有异常和波动的情况下,灰色理论模型的预测精度会大大降低。BP神经网络可以解决非线性复杂的问题,但其训练速度过慢、对外部噪声过于敏感,导致预测结果稳定性差且精度不高。
发明内容
为了克服上述问题或者至少部分地解决上述问题,本发明提供一种基于深度置信网络的水体氨氮预测方法及装置,用以有效提高水体氨氮含量的预测运算速度和预测精度,并有效改善预测方法的稳定性和普适性。
一方面,本发明提供一种基于深度置信网络的水体氨氮预测方法,包括:基于目标水体水质的实际水质参数和实际环境因子参数,利用预先建立的深度置信网络预测模型,预测所述目标水体的氨氮含量;其中,所述深度置信网络预测模型为预先根据预测需求进行初始化,并利用选取的样本数据,进行基于暂时抛弃点dropout的训练和测试获取的,所述样本数据为样本水质环境参数与样本水体氨氮含量对。
其中,所述实际水质参数具体包括:水体水质氨氮含量以及水体水温、水质电导率、水深、水质盐度、总溶解固体浓度、水密度、pH值、溶解氧含量、溶解氧饱和度、氧化还原电位(ORP)、亚硝酸盐浓度、散射浊度、浊度和蓝绿藻浓度中的一种或多种;所述实际环境因子参数具体包括:风速、风向、太阳辐射、空气温度、空气湿度、大气压强、土壤水分和土壤温度中的一种或多种。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国农业大学,未经中国农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810482608.0/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理