[发明专利]物品鉴别方法、系统、设备及存储介质有效

专利信息
申请号: 201810346438.3 申请日: 2018-04-16
公开(公告)号: CN108520285B 公开(公告)日: 2021-02-09
发明(设计)人: 唐平中;李元齐;汪勋;戚婧晨 申请(专利权)人: 图灵人工智能研究院(南京)有限公司
主分类号: G06K9/62 分类号: G06K9/62;G06Q30/00
代理公司: 上海巅石知识产权代理事务所(普通合伙) 31309 代理人: 王再朝;高磊
地址: 210046 江苏省南京*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 物品 鉴别方法 系统 设备 存储 介质
【说明书】:

本申请提供一种物品鉴别方法、系统、设备及存储介质。所述方法包括以下步骤:获取拍摄于待鉴别物品的多幅图像,每幅所述图像中包括有至少一个目标鉴别点;依据训练的对应所述至少一个目标鉴别点的多个卷积神经网络模型分别对所述多幅图像进行识别获得对应每一目标鉴别点的单点分值;依据所述训练的训练集中测试获得的权重,将多个所述目标鉴别点的单点分值进行加权求和处理获得总分值;以及依据所述单点分值或/及所述总分值鉴别所述物品的真伪。本申请利用卷积神经网络对各图像中描述物品的目标鉴别点进行识别,构建评价机制以及通过对识别结果的评价确定物品真伪,有效解决了伪造商品无法快速鉴别的问题。

技术领域

本申请涉及机器学习技术领域,特别是涉及一种物品鉴别方法、系统、设备及存储介质。

背景技术

如今,居民购买力提升、购入奢侈品增多,然而奢侈品真伪混合销售的情况层出不穷,奢侈品鉴别已成为消费者多渠道购入奢侈品的核心需求。目前国内外奢侈品鉴别的主要方式是人工鉴别,还没有通过深度学习方法鉴别奢侈品的论文或专利

人工方式鉴别奢侈品尽管已经取得一些发展,但仍存在诸多问题。第一,国内目前没有奢侈品鉴别行业的职业资格证书,缺乏对于从业者所必备的学识、技术和能力的基本要求,且没有正规的培养方式,从业人员的职业素质很难保证。第二,培养奢侈品鉴别师的代价大,符合要求的鉴别师少,难以满足日益增大的市场需求。且奢侈品鉴别时效性强,所需知识储备量大,而人对于物品真假的理解是非常主观的,不同人依照自身的知识、经验、情绪等情况可能做出不同的判断,难以保证鉴别结果的准确率。第三,人工奢侈品鉴别行业利润空间大,易形成黑色利益链条,难以取得消费者的信任。且对比于去线下找实体店鉴别、寄送给平台鉴别等费时费力的方案,通过图片即可得到结果的方式更符合如今人们的使用习惯。

深度学习是机器学习中一种对数据进行表征学习的算法。源于人工神经网络的研究,其动机在于建立模拟人脑进行分析学习的神经网络,通过模仿人脑的机制来解释图像,声音和文本数据。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。Hinton等人于2006年提出了基于深度置信网络(DBN)的非监督贪心逐层训练算法,开启了深度学习在学术界和工业界的新浪潮。当前,深度学习已成为一种代表性的机器学习技术,被广泛应用于图像、声音、文本等领域。

因此,如何利用深度学习技术对奢侈品进行鉴别以提高鉴别准确率并降低鉴别成为业已成为本领域业者亟待解决的技术问题。

发明内容

鉴于以上所述现有技术的缺点,本申请的目的在于提供一种物品鉴别方法、系统、设备及存储介质,用于解决现有技术中无法快速鉴别物品真伪的问题。

为实现上述目的及其他相关目的,本申请的第一方面提供一种物品鉴别方法,包括以下步骤:获取拍摄于待鉴别物品的多幅图像,每幅所述图像中包括有至少一个目标鉴别点;依据训练的对应所述至少一个目标鉴别点的多个卷积神经网络模型分别对所述多幅图像进行识别获得对应每一目标鉴别点的单点分值;依据所述训练的训练集中测试获得的权重,将多个所述目标鉴别点的单点分值进行加权求和处理获得总分值;以及依据所述单点分值或/及所述总分值鉴别所述物品的真伪。

在所述第一方面的某些实时方式中,所述方法还包括对所述多幅图像进行预处理的步骤。

在所述第一方面的某些实时方式中,所述预处理的步骤包括对所述图像进行尺寸修改、按比例缩放、加噪、反转、旋转、平移、缩放变换、剪切、对比度变换、随机通道偏移中的一种或多种处理。

在所述第一方面的某些实时方式中,所述方法还包括对至少一幅所述幅图像进行聚类处理的步骤。

在所述第一方面的某些实时方式中,所述对至少一幅图像进行聚类处理的步骤包括利用VGG19网络特征分类模型对至少一幅所述图像进行特征近似程度聚类,以确定对所述多幅图像的训练模型。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于图灵人工智能研究院(南京)有限公司,未经图灵人工智能研究院(南京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810346438.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top