[发明专利]一种自动追踪结构模态参数的方法有效
申请号: | 201810211974.2 | 申请日: | 2018-03-12 |
公开(公告)号: | CN108363679B | 公开(公告)日: | 2021-04-20 |
发明(设计)人: | 伊廷华;杨小梅;曲春绪;李宏男 | 申请(专利权)人: | 大连理工大学 |
主分类号: | G06F17/16 | 分类号: | G06F17/16 |
代理公司: | 大连理工大学专利中心 21200 | 代理人: | 温福雪;侯明远 |
地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 自动 追踪 结构 参数 方法 | ||
本发明属于结构健康监测技术领域,提供了一种自动追踪结构模态参数的方法。首先,利用自然激励技术处理随机响应,并采用特征系统实现算法结合稳定图识别在不同时段的模态参数;然后,根据指定被追踪时段内各模态观测向量与前一时段追踪后参考模态所构成的子空间之间的相关性,将被追踪时段内的模态划分为可追踪模态和不可追踪模态两类;最后,将可追踪模态按照模态观测向量相关性最大且频率偏差最小的原则,逐一归入具有相同结构特性的模态类;同时,将不可追踪模态与原参考模态的合集作为新的参考模态,用于后一时段的模态追踪。本发明算法无需人为设定阈值和参考模态,可实现模态参数的自动追踪。
技术领域
本发明属于结构健康监测技术领域,涉及一种自动追踪结构模态参数的方法。
背景技术
结构的服役性能可通过结构模态参数随时间的变化来反映。因此,自动准确地识别出结构的模态参数十分必要。目前广泛采用的模态参数识别方法包括最小二乘复频域法、随机子空间法和特征系统实现算法等。为获取模态参数的实时变化,这些识别方法均将结构响应按时间分为许多子段,然后对每一子段的响应时程进行识别,进而获取各时间段下的模态参数。然而受激励水平、环境干扰以及算法稳定性的影响,各时段获取的模态数量未必相同且各阶模态并非一一对应。模态追踪技术的目的就是保证在不同时段内识别的结构模态能够保持正确的前后对应关系,不发生“模态交叉”现象。
现有的模态追踪方法主要分为三类:1)人工排序法:根据经验归类前后两个时段内识别出的模态参数,这种方法人为参与的工作量较大;2)容许限值法:依照经验设定频率偏差或模态置信度(Modal Assurance Criterion,简称MAC)容许限值来追踪,一般包括固定容限值和自适应调整容限值两种。这类方法若阈值设定不合理,会存在模态错误归类或丢失的问题;3)预测-校正法:基于摄动理论预测后一时段的模态参数,然后比较预测的模态参数与识别的模态参数。这类方法预测计算的效率较低,难以在实际大型工程中应用。因此,精确且无需人为分析的自动模态追踪技术具有重要的工程意义。
发明内容
本发明的目的是提供一种自动追踪结构模态参数的方法,解决在实际工程中实时提取模态参数时,由于经验阈值不合理造成模态追踪不准确或参考模态选择不合理造成模态缺失的问题。
本发明的技术方案是:提出一种自动追踪结构模态参数的方法,其特点是利用自然激励技术处理结构随机激励响应,并采用特征系统实现算法结合稳定图提取结构在不同时段的模态参数;以第一个时间段内识别的各阶模态参数为初始参考模态参数,对参考模态观测向量矩阵进行奇异值分解,获得参考模态子空间及其正交补空间,利用被追踪时段各模态观测向量与参考模态子空间的相关性,将其划分为可追踪模态和不可追踪模态类。对于可追踪模态,利用模态观测向量相关性最大以及频率偏差最小的原则进行追踪,同时,用不可追踪模态与原参考模态的合集来自适应更新参考模态,进行下一时段的模态追踪。
本发明的技术方案:
一种自动追踪结构模态参数的方法,步骤如下:
步骤一:获取不同时段下的模态参数
(1)针对待追踪结构,采集第h时段在第z测点的随机响应y(t)=[y1(t),y2(t),…,yz(t)]T,t=1,2,…,N,N为样本时程点数,利用自然激励方法获得各个时间延迟下的相关函数矩阵r(τ)如下:
式中:rij(τ)为测点i和测点j处加速度响应间的互相关函数;
根据得到的相关函数矩阵r(τ)构造Hankel矩阵Hms(k-1)和Hms(k):
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810211974.2/2.html,转载请声明来源钻瓜专利网。