[发明专利]基于深度置信网络的烧结矿化学成分预测方法在审
申请号: | 201810188530.1 | 申请日: | 2018-03-07 |
公开(公告)号: | CN108388762A | 公开(公告)日: | 2018-08-10 |
发明(设计)人: | 王斌;袁致强;张良力;梁开 | 申请(专利权)人: | 武汉科技大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00;G06N3/08 |
代理公司: | 上海精晟知识产权代理有限公司 31253 | 代理人: | 肖爱华 |
地址: | 430081 湖北省武汉*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 烧结矿 成分预测 预测模型 置信 预测 化学成分预测模型 反归一化处理 灰色关联分析 使用历史数据 输入输出参数 非线性函数 归一化处理 烧结混合料 历史数据 输入参数 数据训练 异常数据 烧结厂 算法 合理性 剔除 逼近 网络 生产 检验 应用 优化 | ||
本发明公开了一种基于深度置信网络的烧结矿化学成分预测方法。该方法根据烧结混合料化学成分,采用基于DBN算法的预测方法来预测烧结矿化学成分;具体包括以下步骤:首先获取烧结厂实际生产的历史数据,剔除异常数据并归一化处理;然后确定影响烧结矿质量的输入输出参数,使用灰色关联分析法来检验输入参数的合理性;再建立基于DBN的烧结矿化学成分预测模型,并使用历史数据数据训练、优化预测模型;最后以此预测模型来预测烧结矿化学成分,并对结果反归一化处理,得到烧结矿化学成分预测值。与现有技术相比,本发明基于DBN的预测模型能更精确实现复杂非线性函数的逼近,提高烧结矿化学成分预测精度,在实际生产中具有应用推广价值。
技术领域
本发明属于钢铁冶炼技术领域,涉及一种烧结矿化学成分预测方法,特别涉及一种基于深度置信网络的烧结矿化学成分预测方法。
背景技术
烧结矿是高炉炼铁的主要原料,烧结矿的化学成分是评测烧结矿质量的重要指标。配料是烧结生产的首道工序,对烧结矿的化学成分具有重大影响。由于烧结矿化学原料来源广、品种多、成分复杂,烧结过程具有长时间滞后、强耦合、非线性等特点使得烧结矿化学成分很难准确控制。通过在配料配比制定过程中,对烧结矿化学成分进行精确预测,及时调整原料配比,提高烧结矿质量具有重要意义。
在烧结矿化学成分预测研究中,随着计算机技术的发展,一些浅层智能预测模型近些年得到了较广泛的研究和应用,提高了预测精度。龙红明等人采用带动量项的线性再励自适应变步长BP神经网络算法,建立了基于多周期运行模式的烧结矿化学成分预报模型;范晓慧等人结合灰色预测和神经网络预测方法的优点,建立了基于灰色神经网络的烧结矿化学成分预测模型;宋强等人提出了基于最小二乘支持向量机的烧结矿化学成分的软测量模型的研究,利用支持向量机建立烧结矿化学成分的预报模型。上述文献中提到的神经网络,灰色理论和支持向量机等属于浅层学习算法,浅层学习算法在给定有限数量的样本时是很难有效地表示非线性复杂函数,泛化能力受到了限制,进而影响烧结矿化学成分预测结果。
深度学习是一种模拟人类大脑的多层感知结构算法。相对于浅层学习方法,深度学习通过学习一种深层非线性网络结构,能更精确实现复杂非线性函数的逼近,近年来已经在许多领域得到了有效应用。深度置信网络(Deep Belief Network,简称DBN)是一种常用的深度学习的框架。
发明内容
本发明的目的在于,克服上述现有技术的不足,提供一种基于深度置信网络的烧结矿化学成分预测方法。该方法通过建立DBN预测模型,可充分发掘烧结过程的本质特征,提高烧结矿化学成分预测精度。
本发明的目的是通过以下技术方案实现的:
一种基于深度置信网络(即DBN)的烧结矿化学成分预测方法,该方法是:在烧结原料配料完成后,得到混合料,根据混合料化学成分,采用基于深度置信网络(即DBN)算法的预测方法来预测烧结矿化学成分,以检验烧结配料过程中配比的准确性,及时调整配比,达到改进烧结矿质量的目的。该方法具体包括以下步骤:
S1:获取烧结厂实际生产的历史数据,对获取的数据进行预处理,剔除异常数据并进行归一化处理;
S2:确定影响烧结矿质量的输入输出参数,使用灰色关联分析法来检验输入参数的合理性;
S3:建立基于DBN的烧结矿化学成分预测模型,使用步骤S1中的数据对预测模型进行训练,优化预测模型;
S4:以步骤S3得到的预测模型来预测烧结矿化学成分,预测结束后得到的数据在[0,1]之间,再对这些得到的数据进行反归一化处理,得到烧结矿化学成分预测值。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉科技大学,未经武汉科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810188530.1/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用