[发明专利]用于废水处理厂或饮用水厂的过程和资产健康诊断、异常检测和控制的智能系统和方法在审
| 申请号: | 201780078171.8 | 申请日: | 2017-10-09 |
| 公开(公告)号: | CN110088619A | 公开(公告)日: | 2019-08-02 |
| 发明(设计)人: | 夏子君;吕苏;万朝阳;王昱;毕喜婧;王国梁;唐传友;朱志平;马文超;董勤;王斯靖;李一松;凌佳佳 | 申请(专利权)人: | BL科技有限责任公司 |
| 主分类号: | G01N33/18 | 分类号: | G01N33/18;G06F16/25;G06F16/2458 |
| 代理公司: | 北京柏杉松知识产权代理事务所(普通合伙) 11413 | 代理人: | 谢攀;刘继富 |
| 地址: | 美国明*** | 国省代码: | 美国;US |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 异常检测 资产健康 水厂 废水处理厂 诊断 实时数据 先进技术 智能系统 警报 饮用水 分析 | ||
本文介绍了分析从水厂获取的历史和实时数据,使用先进技术确定过程和资产健康诊断和异常检测,并基于这些确定控制水厂和/或提供警报的系统和方法。
技术领域
本文公开了分析从水厂获取的历史和实时数据的系统和方法,使用先进技术确定过程和资产健康诊断和异常检测,并基于这些确定来控制水厂和/或提供警报。
背景技术
废水处理厂和饮用水厂需要日常监测和运行,以确保过程卫生达到排放标准,同时降低运行成本。处理过程诊断、数据异常识别、设备健康诊断是操作人员采取正确的决策或控制动作的关键步骤。传统上,水处理是漫长的过程,需要利用传感器(如水质传感器和资产传感器)或实验室测试生成的大量数据。目前,大多数的日常诊断都是由人根据经验和简单的数据分析(如阈值判断)做出的。很难同时处理多个参数来分析可能的传感器欺骗或健康问题,从而始终进行最佳控制。不同的人做出这样的决定和判断可能导致水厂管理的质量水平不同。另外,在工厂设计和运行过程中,根据经验保留较大的裕度,以确保即使在最坏的情况下也能达到排放标准,这导致更高的运行成本。智能诊断系统能帮助人们提高日常操作效率,提高诊断质量,使诊断更全面和可靠。这样的系统也有助于提高运行质量,及时预防故障,最终提高效益。
因此,需要一种方法和系统来快速、连续、准确地诊断过程和资产健康状况、检测异常,并高质量经济有效地动态控制水处理过程。
发明内容
本发明公开了用于废水处理厂或饮用水厂的过程和资产健康诊断和异常检测的智能方法或系统。该系统包括用于确定包括过程和资产健康状况在内的工厂健康状况的整个诊断方法。能够将结果作为通知推送到用户界面,或者推送到控制系统,以便根据结果采取动作。诊断数据能从一个或更多个流入传感器、资产传感器、过程传感器、排放传感器、实验室试验、工厂动态或静态模拟模型、用于模拟或预测工厂过程或资产的任何其他模型等获得。与传统的人类经验或简单阈值方法相比,本文所描述的系统和方法结合了一系列先进的方法或算法,以获得更全面、更可靠的诊断结果。本文所述的系统和方法向最终用户提供智能水厂诊断服务或产品,以便更好地监测和管理日常操作。算法或模型可以是但不限于监督学习、无监督学习、风险识别、异常检测、统计分析、交叉验证等。所有的算法或模型都能随着数据的加载而连续升级。
另外,本文公开了使用具有基于物理模型和基于工厂数据的模型/算法的协同作用的预测分析对水厂进行动态控制和操作的方法和系统。水处理厂包括废水处理厂和饮用水处理厂。系统的实施例获取工厂数据,采集工厂动态特征,在其智能模块“工厂健康诊断”和“高级控制器”中进行分析以主动预测工厂性能以及优化其控制和运行,然后将优化后的控制策略传递给厂下控制系统进行实时控制。智能模块是基于工厂物理模型和基于数据模型/算法的协同作用的地方。该智能控制系统将工厂运行控制从传统的经验水平提高到基于知识和数据的水平,并能够处理更复杂的情况,使工厂控制和运行更加可靠和有效。水处理控制的智能控制能基于工厂设施的动态状态有效地利用工厂设施,平衡排放质量和工厂运行成本,提高工厂的生产效率和可靠性。本文还公开了一种快速求解具有一定安全水平的最优控制策略或参数的方法或方式。
本发明公开了一种智能水厂健康诊断和异常检测方法的实施例,包括从水厂获取数据;对获取到的数据进行分析以对水厂进行健康诊断或异常检测;并基于水厂的健康诊断或异常检测采取一个或更多个动作。
一方面,水处理厂包括废水处理厂或饮用水处理厂。
从水厂获取数据可包括使用一个或更多个流入传感器、资产传感器、过程传感器、排放传感器、实验室测试、工厂动态或静态模拟模型等获取数据。
对获取的数据进行分析以对水厂进行健康诊断或异常检测,可以包括对获取的数据应用一种或更多种诊断方法,如监督学习、无监督学习、与模拟模型的交叉验证、异常检测和风险模式识别。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于BL科技有限责任公司,未经BL科技有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201780078171.8/2.html,转载请声明来源钻瓜专利网。





