[发明专利]一种基于近邻保持低秩表示的人脸识别方法、装置及设备有效
申请号: | 201711395361.0 | 申请日: | 2017-12-21 |
公开(公告)号: | CN107958229B | 公开(公告)日: | 2021-12-24 |
发明(设计)人: | 张召;任加欢;张莉;王邦军 | 申请(专利权)人: | 苏州大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 罗满 |
地址: | 215104 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 近邻 保持 表示 识别 方法 装置 设备 | ||
本发明实施例公开了一种基于近邻保持低秩表示的人脸识别方法、装置、设备及计算机存储介质。其中,方法包括将相似性自适应保持和低秩表示集成为统一学习框架,得到表示系数矩阵和用于提取特征、基于核范式和L2,1‑范式约束下的稀疏投影矩阵;利用稀疏投影矩阵分别提取训练样本集和测试样本集的相似性自适应保持的显著特征,生成嵌入显著特征的人脸特征训练样本集和人脸特征测试样本集;利用人脸特征训练样本集将表示系数矩阵和显著特征的重构误差最小化项进行集成优化;将人脸特征测试样本集输入人脸特征训练样本集构造的最近邻分类器,根据相似性进行识别,得到识别结果。本申请提供的技术方案提升了人脸图像特征提取和识别能力。
技术领域
本发明实施例涉及计算机视觉和图像识别技术领域,特别是涉及一种基于近邻保持低秩表示的人脸识别方法、装置、设备及计算机存储介质。
背景技术
随着数据量的增长以及内容复杂性的增大,在数据挖掘与分析领域,如何有效地、健壮地表示数据已经越来越重要。目前,数据表示的方法包括维数约减,稀疏表示以及低秩恢复等。
在低秩表示模型中,一般采用鲁棒主成分分析(RPCA)和低秩表示(LRR)。鲁棒主成分分析和低秩表示目的在于将所给的数据矩阵分解成一个低秩组成和一个稀疏错误部分,低秩部分相当于原始数据的简洁表示。由于低秩编码,鲁棒主成分分析和低秩表示都能有效地处理破坏数据以及同时修正数据中的噪音和其他错误等。但RPCA只能处理单一子空间数据,而LRR可以很好地处理混合数据,即混合子空间数据。但是RPCA和LRR本质上都是直推式的算法。
近几年,已经对RPCA和LRR处理恢复和错误改正的能力进行改善。提出了归纳式鲁棒主成分分析(IRPCA),可通过优化一个核范式最小化问题来学习一个低秩投影,并可被处理新数据。另一个方法是潜在低秩表示(LatLRR),利用某些潜在观测值对低秩估计进行隐藏效应的恢复。但目前的大部分低秩编码方法无法有效的保存领域信息或数据局部几何结构。
发明内容
本发明实施例的目的是提供一种基于近邻保持低秩表示的人脸识别方法、装置、设备及计算机存储介质,提升了人脸图像特征提取和识别能力。
为解决上述技术问题,本发明实施例提供以下技术方案:
本发明实施例一方面提供了一种基于近邻保持低秩表示的人脸识别方法,包括:
将相似性自适应保持和低秩表示集成为统一学习框架,以获取表示系数矩阵和用于提取特征、基于核范式和L2,1-范式约束下的稀疏投影矩阵;
利用所述稀疏投影矩阵分别提取训练样本集和测试样本集的相似性自适应保持的显著特征,生成嵌入显著特征的人脸特征训练样本集和人脸特征测试样本集;
利用所述人脸特征训练样本集将所述表示系数矩阵和所述训练样本集的显著特征的重构误差最小化项进行集成优化,联合最小化和将所述表示系数矩阵在原始数据空间和显著特征空间进行共享优化;
利用所述人脸特征训练样本集进行最近邻分类器模型构造;
将所述人脸特征测试样本集输入所述最近邻分类器中,根据所述人脸特征训练样本集和所述人脸特征测试样本集之间的相似性,获得所述人脸特征测试样本集的识别信息,以得到所述人脸特征测试样本集的人脸识别结果。
可选的,所述利用所述人脸特征训练样本集将所述表示系数矩阵和所述训练样本集的显著特征的重构误差最小化项进行集成优化包括:
将所述训练样本集分解为基于Frobenius-范式正则化的主成分特征、相似性自适应保持的显著特征及稀疏误差项,对所述表示系数矩阵和所述训练样本集的显著特征的重构误差最小化项进行集成优化,得到初步目标函数:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711395361.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:识别精度高的人脸识别装置
- 下一篇:人脸表情识别方法及装置