[发明专利]一种苹果叶片点云精简方法及装置有效
申请号: | 201711385229.1 | 申请日: | 2017-12-20 |
公开(公告)号: | CN108198244B | 公开(公告)日: | 2020-11-10 |
发明(设计)人: | 刘刚;张伟洁;郭彩玲 | 申请(专利权)人: | 中国农业大学 |
主分类号: | G06T17/10 | 分类号: | G06T17/10 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 王莹;吴欢燕 |
地址: | 100193 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 苹果 叶片 精简 方法 装置 | ||
1.一种苹果叶片点云精简方法,其特征在于,包括:
S1,使用三维激光扫描设备获取苹果叶片的空间三维信息,并对所述空间三维信息进行去噪处理,获得原始点云;
S2,利用基于包围盒的K-邻域搜索方法计算所述原始点云中的任一点的K-邻域,并通过计算每个点与其K-邻域内各邻近点之间的平均距离确定是否为离群点,将所有离群点从所述原始点云中删除,获得当前点云;
S3,基于最小二乘法计算所述当前点云中的任一点的法向量、K-邻域内的局部平均曲率以及所述当前点云的全局平均曲率和曲率方差;
S4,通过建立k-d树空间拓扑结构并利用所述当前点云中各个点与其K-邻域内各邻近点之间的位置关系,确定当前点云中的边界点;
S5,对于当前点云中的任一非边界点,根据所述全局平均曲率、曲率方差以及预设的点云精简率确定曲率阈值,并根据所述非边界点的K-邻域内的局部平均曲率与所述曲率阈值间的大小关系以及所述非边界点与其K-邻域内所有邻近点的法向量的点积和的正负情况,将所述非边界点划分为特征点及非特征点;
S6,根据所述预设的点云精简率,将所有非特征点所组成的点云划分为多个边长等长的子立方体,计算每个所述子立方体的重心点,并将所述边界点、特征点及重心点存储为最终的精简点云结果。
2.根据权利要求1所述的方法,其特征在于,所述步骤S2进一步包括:
S21,建立所述原始点云的最大包围盒;
S22,将所述最大包围盒划分为边长等长的多个子立方体,从所述原始点云中任意选取一个点作为当前点,根据当前点的坐标值,计算当前点所在子立方体的索引并进行存储;
S23,在当前点所在子立方体及相邻的26个子立方体中搜索距离当前点最近的前K个点作为当前点的K-邻域,并在搜索过程中,通过创建两个向量分别存储当前点的K-邻域内各邻近点的索引以及当前点与其K-邻域内各邻近点间的欧氏距离;
S24,根据当前点与其K-邻域内各邻近点间的欧氏距离计算当前点与其K-邻域内各邻近点间的平均距离;
S25,重复步骤S21至S24直至遍历完所述原始点云,根据所述原始点云中的各个点与其K-邻域内各邻近点间的平均距离计算全局平均距离和距离方差;
S26,根据所述全局平均距离和距离方差确定距离阈值,将所获得的各个点与其K-邻域内各邻近点间的平均距离与所述距离阈值逐一进行比较,若所述平均距离大于距离阈值,则将所述平均距离对应的点标记为离群点;
S27,将所有离群点从所述原始点云中删除,获得当前点云。
3.根据权利要求2所述的方法,其特征在于,所述步骤S3进一步包括:
S31,确定曲面拟和方程,并根据最小二乘拟合原理,使所述曲面拟合方程取最小值,获得下式:
其中,Nb(Pi)为Pi的K-邻域点集合;
S32,分别对上式中的常系数a,b,c求偏导并取0,获得常系数a,b,c的值;
S33,记
分别记偏导为fx,fy,fxy,fxx,fyy,则所述当前点云中的任一点Pi的法向量
S34,根据上述各偏导fx,fy,fxy,fxx及fyy的值,分别计算所述点Pi的高斯曲率KGauss、K-邻域内的局部平均曲率Hi;
S35,重复步骤S31至S34,直至遍历完所述当前点云,并根据当前点云各点的K-邻域内的局部平均曲率计算当前点云的全局平均曲率Hglobal以及曲率方差。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国农业大学,未经中国农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711385229.1/1.html,转载请声明来源钻瓜专利网。
- 上一篇:森林融雪监测系统
- 下一篇:基于双灰度因素的三维阈值立体图形形成方法