[发明专利]一种基于传统Benders分解法的电力系统日前鲁棒调度方法有效
申请号: | 201711238465.0 | 申请日: | 2017-11-30 |
公开(公告)号: | CN107977744B | 公开(公告)日: | 2021-07-13 |
发明(设计)人: | 杨楠;王璇;李宏圣;黎索亚;叶迪;黄禹;董邦天 | 申请(专利权)人: | 三峡大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/06 |
代理公司: | 宜昌市三峡专利事务所 42103 | 代理人: | 成钢 |
地址: | 443002*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 传统 benders 解法 电力系统 日前 调度 方法 | ||
本发明属于电网调度领域,具体是一种基于传统Benders分解法的电力系统日前鲁棒调度方法,用来求解含新能源的电力系统动态经济调度问题。提出了一种综合考虑负荷、风电以及光伏出力不确定性及概率相关性的日前鲁棒调度方法。首先构建考虑多重不确定性因素及概率相关性的改进鲁棒优化调度模型;然后利用Cholesky分解法将具有相关性的随机样本转换为相互独立的随机样本,从而基于样本特征直接确定最坏场景;最后利用Benders分解法对模型进行求解。基于IEEE‑118节点算例的仿真结果表明:本发明所提方法可以在多重不确定性因素下,保证日前调度计划鲁棒性的同时,有效提升其经济性,而基于Cholesky分解的最坏场景确定方法也有效提升了鲁棒调度模型的紧凑性,使其计算效率得到显著提升。
技术领域
本发明一种基于传统Benders分解法的电力系统日前鲁棒调度方法,涉及电力系统调度领域。
背景技术
风电及光伏是无污染、绿色的可再生能源,其分布广泛、能量密度高,适合大规模开发,因此,风力和光伏发电技术已受到了世界各国的高度重视。然而,由于其出力具有随机性与波动性的特点,大规模接入电网将会给传统的调度方法带来极大的挑战,因此,研究多种新能源大规模接入下的电力系统日前调度方法具有重要的理论价值与现实意义。
目前很多专家学者从不同角度研究了新能源接入下的电力系统日前调度问题,但普遍仅考虑了单一不确定性变量,然而实际电力系统中包含诸如风电出力、光伏出力、负荷预测误差等多重不确定性因素,现有仅考虑单一不确定性的日前调度显然难以保证其决策的有效性并影响系统运行的经济性。因此在调度问题中考虑多重不确定性因素的影响已经成为近年来专家学者们研究的热点。
发明内容
针对现有方法的不足,本发明提出了一种综合考虑负荷、风电以及光伏不确定性及相关性的改进鲁棒调度方法,该方法首先构造考虑多种不确定性因素的日前鲁棒优化调度模型,然后引入Cholesky分解法将具有相关性的随机样本转换为相互独立的随机样本,并基于样本特征直接确定最坏场景,最后进行鲁棒机组组合求解。
本发明采取的技术方案为:
一种基于传统Benders分解法的电力系统日前鲁棒调度方法,包括以下步骤:
1)考虑多重随机因素的日前鲁棒调度建模;
2)最坏场景求解;
3)通过Benders分解法来对模型进行求解;
在步骤1)中,首先考虑多重随机因素的日前鲁棒调度建模;然后进行基本场景下的日前调度建模;再进行不确定场景下的日前调度建模;
在步骤2)中首先进行随机因素的概率密度函数建模,然后样本抽样,再进行正交转换矩阵推导;接着进行最坏场景求取;
在步骤3)中,具体操作步骤如下:
1)求解主问题模型,得到其最优机组组合和出力方案;
2)将主问题的解分别代入到两个安全子问题中进行校验;
3)如果两个子问题有任何一个无法通过校验,则生成相应的Benders割;
4)将生成的Benders割返回到主问题中继续寻找新的机组组合和出力方案,并返回步骤2),如果两个子问题校验均通过,则迭代停止,输出结果。
在步骤1)中,多重随机因素包括风电、光伏及负荷预测误差因素。
在步骤1)中,将机组组合决策分为基本场景和最坏场景分别建模。
上述基本场景以不确定性因素功率预测值为基础,以系统总运行成本最小为目标,同时考虑系统在确定性环境下的各种常规约束条件。
上述最坏场景以不确定性电源出力的最大波动出力为基础,考虑不确定性约束条件。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于三峡大学,未经三峡大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711238465.0/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理