[发明专利]基于机器学习的螺杆式物料配料机控制器有效

专利信息
申请号: 201710905606.3 申请日: 2017-09-19
公开(公告)号: CN107640609B 公开(公告)日: 2019-09-24
发明(设计)人: 邹细勇;朱力;穆成银 申请(专利权)人: 中国计量大学
主分类号: B65G65/46 分类号: B65G65/46;B65G65/00;B65D88/66
代理公司: 暂无信息 代理人: 暂无信息
地址: 310018 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 机器 学习 螺杆 物料 配料 控制器
【说明书】:

本发明公开了基于机器学习的螺杆式物料配料机控制器,其包括信号采集模块、处理模块、神经网络模块、迭代学习模块、存储模块、第一连接阵、第二连接阵和输出模块;采用的动态递归Elman神经网络将下料仓料位、空中落差、落料率、物料密度及螺旋输送器的螺旋叶片直径、螺距和螺杆最大转速映射为物料空中量,离线训练中迭代学习模块根据梯度下降法调整权值,在线控制下料过程中处理模块根据空中量预测值通过输出模块对螺旋输送器进行提前关闭控制。本发明采用非线性网络对下料过程进行建模,训练后的网络能对不同落料状态下的空中量进行准确预测,从而可直接精确下料且适用于小批量生产,又由于螺杆可保持高运转速度而提升了下料效率。

技术领域

本发明涉及定量下料领域,具体涉及一种基于机器学习的螺杆式物料配料机控制器。

背景技术

在工农业制造和商品包装中,有大量的粉粒物料,如煤粉等炼铁原料,聚丙烯、聚苯乙烯、聚氯乙烯、轻甲基纤维素、聚丙烯睛、环氧树脂粉末涂料等化工原料,石英砂、水泥等建材原料,洗衣粉等日用化工产品,小米、大豆等谷物豆类农产品,或粉、渣、粒状加工食品,饲料、化肥、农药等农业生产物料,以及粉粒状的保健品、中西药剂、调味品等均需要自动定量包装或者配料制造。

目前我国有很多企业仍然采用手工定量配料或者包装,一方面劳动强度大,速率慢,经济效益差;另一方面,食品、药品等手工定量往往不能满足卫生要求,有毒有害的物料,人工参与定量容易对人体造成伤害。因此对生产企业来说,急需提供价廉的具有较高速率和准确度的多组份自动定量下料设备或者装置,满足大量的物料定量包装或者配料制造要求。

目前国内外粉粒物料自动定量下料装置常用方法有两种,容积式和称重式。容积式定量依据物料容积进行计量充填或者投料,定量投料迅速,但定量物料质量受到物料密度变化而变化。为提高下料精度,出现了多种调节方法,如申请号为201320001933.3的中国专利,对螺杆采用变频调速,在接近目标值逐渐减慢喂料速度,减少空中落差值;申请号为201310234280.8的中国专利,在纯碱包装机三速变频给料工艺中采用大小螺杆分多阶段下料;申请号为200920248298.2的中国专利考虑到快速下料时难以控制定量而通过先快后慢的方法来减小供料落差的影响;这些非称重式方案的下料终值只能接近期望值,准确度不高。

称重式定量依据物料质量进行计量充填或者投料,需要在下料过程中不断称重,根据称重结果反馈控制下料量,由于称重受到下料冲击和空中滞后物料影响较大,下料速度和精度都面临很多困难。为了补偿空中物料对计量精度的干扰,很多方案采用提前关闭阀门的技术,如申请号为201410230888.8的中国专利将配料称重过程划分为三个阶段,并在最后一个阶段采用迭代学习控制方式来计算关闭提前控制量。

相比迭代学习控制中的间接式的线性迭代预测,如果能通过对影响下料过程中物料空中落料量各因素的分析来构造一种非线性映射,则可以更直观的描述下料过程并基于这种映射对物料空中量进行准确、直接的预测。

发明内容

单纯的螺杆式送料器属于容积式定量范畴,容积式定量充填基于容积来计量充填物料的数量,其结构简单,成本低,但定量充填速度稳定性及精度依赖于物料视比重的稳定性,受物料松散程度、颗粒均匀程度、吸湿性等物理化学性质的影响较大。由于普通容积式本质上是换算式的,无法像称重式一样掌握下料的确切质量,后来虽然出现了结合称重的方案,但由于没有空中量预测而只能依靠下料最后阶段极低的送料速度来保证精度。

为此,本发明将动态称重检测与螺杆送料器相结合,以提高下料速度。但在称重式下料中,需要对空中量及其冲击进行估算。而下料过程中的空中落料量即空中量,其影响因素很多,如输送装置关闭速度、下料口到秤斗料面间落差大小、物料下落形态流率等,因而提前关闭下料输送装置的时间难以通过离线实验一次性确定。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量大学,未经中国计量大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710905606.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top