[发明专利]数据处理方法以及装置有效
申请号: | 201710700605.5 | 申请日: | 2017-08-16 |
公开(公告)号: | CN107527382B | 公开(公告)日: | 2020-11-03 |
发明(设计)人: | 韩林;田明慧 | 申请(专利权)人: | 北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司 |
主分类号: | G06T17/00 | 分类号: | G06T17/00;G06F16/29 |
代理公司: | 中国贸促会专利商标事务所有限公司 11038 | 代理人: | 方亮 |
地址: | 100195 北京市海淀区杏石口路6*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 数据处理 方法 以及 装置 | ||
1.一种数据处理方法,其特征在于,包括:
周期性获取惯性导航数据和激光点云数据;
根据测量场景对所述惯性导航数据进行过滤;
计算过滤掉的各个惯性导航数据的误差的平均值,并计算所述平均值与第五阈值的差值作为参考误差,利用所述参考误差修正所述过滤掉的各个惯性导航数据,其中,所述第五阈值与所述过滤模型对应;
根据过滤后的惯性导航数据和修正后的惯性导航数据与所述激光点云数据构建三维场景;
其中,所述根据测量场景对所述惯性导航数据进行过滤包括:
根据测量场景选取对应的过滤模型;利用所述过滤模型对所述惯性导航数据进行过滤;所述测量场景包括:路面状况、车辆速度、惯性导航数据的采集频率、惯性导航系统的厂商、惯性导航系统的型号、惯性导航系统硬件误差中的至少一项。
2.根据权利要求1所述的方法,其特征在于,
所述利用所述过滤模型对所述惯性导航数据进行过滤包括:
计算当前惯性导航数据与相邻前一次测得的惯性导航数据的差值作为当前惯性导航数据的误差,如果所述当前惯性导航数据的误差不满足第一阈值范围,则将当前惯性导航数据过滤掉,所述第一阈值范围与所述过滤模型对应;和/或
从当前惯性导航数据至第一次测得的惯性导航数据,分别计算未被过滤掉的每相邻两次测得的惯性导航数据的差值,并对各个差值求平均值作为当前惯性导航数据的误差,如果所述当前惯性导航数据的误差不满足第二阈值范围,则将当前惯性导航数据过滤掉,所述第二阈值范围与所述过滤模型对应。
3.根据权利要求1所述的方法,其特征在于,
所述利用所述过滤模型对所述惯性导航数据进行过滤包括:
计算当前惯性导航数据与相邻前一次测得的惯性导航数据分别乘以对应的误差率之后的差值作为当前惯性导航数据的误差,如果所述当前惯性导航数据的误差不满足第三阈值范围,则将当前惯性导航数据过滤掉,所述第三阈值范围以及每次测得的惯性导航数据的误差率与所述过滤模型对应;和/或
从当前惯性导航数据至第一次测得的惯性导航数据,分别计算未被过滤掉的每相邻两次测得的惯性导航数据分别乘以对应的误差率之后的差值,并对各个差值求平均值作为当前惯性导航数据的误差,如果所述当前惯性导航数据的误差不满足第四阈值范围,则将当前惯性导航数据过滤掉,所述第四阈值范围以及每次测得的惯性导航数据的误差率与所述过滤模型对应。
4.根据权利要求1所述的方法,其特征在于,在根据过滤后的惯性导航数据与所述激光点云数据构建三维场景之前还包括:
将不符合第一预设角度范围的激光束对应的激光点云数据删除;或者
将不符合第二预设角度范围的激光束中的激光线对应的激光点云数据删除。
5.根据权利要求1所述的方法,其特征在于,
所述根据过滤后的惯性导航数据与所述激光点云数据构建三维场景包括:
将每一周期获取的激光点云数据由激光坐标系转换为同时刻获取的未被过滤的惯性导航数据对应的地理位置坐标系;
将转换为地理位置坐标系的各个周期的激光点云数据叠加构建三维场景。
6.根据权利要求1所述的方法,其特征在于,
所述惯性导航数据包括运动姿态数据和/或地理位置数据,所述运动姿态数据包括航向数据、俯仰数据、横滚数据,所述地理位置数据包括经度、纬度、高程;
所述地理位置数据是从卫星导航系统获取并通过惯性导航系统根据惯性方向、当前运动情况以及各个自由度方向的受力情况进行修正后得到的。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司,未经北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710700605.5/1.html,转载请声明来源钻瓜专利网。