[发明专利]一种基于SVM算法对短时交通路况预测的方法在审

专利信息
申请号: 201710433951.1 申请日: 2017-06-09
公开(公告)号: CN107170234A 公开(公告)日: 2017-09-15
发明(设计)人: 吴建龙;史柯 申请(专利权)人: 东方网力科技股份有限公司
主分类号: G08G1/01 分类号: G08G1/01;G06Q10/04
代理公司: 北京金智普华知识产权代理有限公司11401 代理人: 巴晓艳
地址: 100102 北京市朝阳区*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 svm 算法 交通 路况 预测 方法
【说明书】:

技术领域

发明属于智能交通技术领域,具体涉及一种基于SVM算法对短时交通路况预测的方法。

背景技术

道路交通系统是一个众多人参与、实时变化、复杂的非线性系统,具有高度的不确定性,和随机性。这些因素都给交通预测带来了困难,尤其是短时交通预测受随机干扰因素如交通事故、道路施工、突发事件、天气变化等影响更大,不确定性更大规律性更加不明显。交通流具有高度的复杂性、非线性和不确定性,因此以经典的数学方法为基础建立的交通路况预测模型,其预测精度难以很好地满足智能交通系统中实时交通控制诱导的需求。随着交通预测领域研究的深入,各种方法大体可分为两类:一类是以数理统计等传统数学为基础的预测方法;另一类是不追求严格的数学推导,更重视对真实交通现象拟合效果的预测模型。第一类包括时间序列模型,卡尔曼滤波模型,参数回归模型等;第二类则包括非参数回归模型,基于小波理论的方法,神经网络模型等。

西南交通大学计算机与通信工程学院的李存军、杨儒贵、张家树于2003年在计算机应用刊物上发表了论文《基于小波分析的交通流量预测方法》。论文中为了更准确地预测动态变化的交通流量,提出了在小波分析的基础上利用离散卡尔曼滤波进行预测的方法,这种方法可用于动态数据预测的不同领域,如网络流量的预测,经济信息的预测以及其它非线性系统的预测。实验表明,这种方法可以有效地减小数据预测的误差。西南科技大学信息工程学院的申慧、刘知贵、李春菊于2008年在西南科技大学学报上发表了论文《基于BP神经网络的交通流量预测设计》。论文中以交通流量控制为目标,在交通流量特性的研究基础上,建立了基于BP神经网络的交通流量预测模型,并以某三岔口路段为例进行验证,根据相邻两路段的交通流量和天气状况作为输入建模,结果表明预测系统能够比较准确地预测另一路段的交通流量。中国科学院自动化研究所的宫晓燕、汤淑明于2003年在中国公路学报上发表了论文《基于非参数回归的短时交通流量预测与事件检测综合算法》。论文中非参数回归的交通流预测主要根据历史流量数据哭的建立,将实时观察数据通过K近邻搜索算法与历史数据进行匹配,在加权平均得到最终预测结果。该方法无需训练,方便移植,预测误差较小。

现有针对交通预测的方法众多,各有优势和劣势:时间序列模型在大量不间断数据基础上精度较高,但参数估计复杂,参数不能移植,实际应用中会因为数据遗漏问题导致预测精度降低,且依赖大量历史数据,成本很高。卡尔曼滤波法的预测精度随预测时间间隔的变化不大,但每次计算均需调整权值,计算较为复杂,难以用时实时在线预测,输出结果会延迟几个时间段。非参数回归不需要先验知识,只需历史数据,通过寻找历史数据中与当前点相似的近邻,用得到的近邻预测下一时刻结果。该方法使用方便,误差分布情况良好,但在大量历史数据中搜索近邻的复杂度可能会影响预测结果输出的时效性。神经网络凭借其逼近任意非线性函数的能力和所具有的容错、自学习等优势,已被国内外很多学者用于建立交通流量预测模型,并取得了不少研究成果。由于神经网络是一种依赖经验的启发式技术,他的学习过程采用经验风险最小化原则,在小样本情况下,容易出现过拟合现象导致泛化能力低下。同时神经网络算法复杂性受网络结构复杂性和样本复杂性的影响较大。这些不足,使神经网络模型在交通流预测中的应用效果不如期望的那么好,对于非平稳的短时交通流,当输入数据混有噪声时,神经网络预测精度会更差。

故基于以上不同方法的分析,和智能交通系统中的实际应用场景,确定选用基于支持向量机的非线性回归方法来进行短时交通路况预测。而基于支持向量机的非线性回归预测有严格的理论和数学基础,基于结构风险最小化原则,泛化能力优于神经网络等,算法具有全局最优性。该方法的主体思想是根据一些训练样本,寻找一个最优的函数,使得函数对输入X的估计Y'与实际输出Y之间的期望风险(可以暂时理解为误差)最小化。

发明内容

为了解决上述问题,本发明提供一种基于SVM算法对短时交通路况预测的方法,所述方法通过SVM的非线性回归进行预测路况值,根据之前邻近时段的路况值去训练SVM模型,进而预测下个时段的路况值,并根据路况值转化为拥堵等级完成短时各道路交通拥堵状况的预测;

进一步地,所述方法包括:

S1:选择核函数,确定SVM参数,在得到邻近时段的路况值的数据集后,选择高斯核函数作为核函数,所述SVM参数包含宽度参数δ、二次规划的优化参数ε和C;

S2:输入邻近时段的路况值数据集作为样本,生成预测函数;

S3:根据预测结果进行评价分析后输出结果;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东方网力科技股份有限公司,未经东方网力科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710433951.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top