[发明专利]基于打孔还原氧化石墨烯的锂硫电池在审
申请号: | 201710318979.0 | 申请日: | 2017-05-08 |
公开(公告)号: | CN108878879A | 公开(公告)日: | 2018-11-23 |
发明(设计)人: | 冯奕钰;王伟哲;封伟;曹宇 | 申请(专利权)人: | 天津大学 |
主分类号: | H01M4/583 | 分类号: | H01M4/583;H01M4/62;H01M10/052 |
代理公司: | 天津创智天诚知识产权代理事务所(普通合伙) 12214 | 代理人: | 王秀奎 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 打孔 还原氧化石墨烯 锂硫电池 正极 负极 介孔 微孔 双氧水 电化学性能 氧化石墨烯 自支撑材料 反应位点 活性物质 金属锂片 有效抑制 硫化锂 纳米级 石墨烯 水热法 自组装 隔膜 吸附 还原 并用 | ||
本发明公开基于打孔还原氧化石墨烯的锂硫电池,以金属锂片为负极,以打孔还原氧化石墨烯为自支撑材料,作为正极,以Celgard 2400为隔膜,利用水热法将氧化石墨烯还原并自组装,并用双氧水打孔所致使石墨烯表面产生纳米级的介孔和微孔,提高了比表面积,增加了活性物质反应位点,同时微孔和介孔有效的吸附多硫化锂,从而有效抑制其在正极与负极之间的穿梭,从而提升锂硫电池的电化学性能。
技术领域
本发明涉及锂硫电池技术领域,尤其涉及一种锂硫电池正极材料、其制备方法及包含上述锂硫电池正极材料的锂硫电池。
技术背景
随着世界人口的不断增长,能源需求的增加和气候的变化,我们必须将重点放在为人类创造一个可持续的能源未来的同时,还要保护我们脆弱的环境。为了实现这一目标,我们需要减少我们对化石燃料的依赖,并转向清洁、可再生能源。然而,这些可再生能源需要先进能源存储系统,可以当它处在过量状态时储存,在被需求时释放回电网,以维持家庭和工业稳定的电源供应。不幸的是,锂离子电池无法满足固定式电网储能的高能量要求。电池有限的能量密度也阻碍了他们在各种新兴移动运输工具上的运用。这便引发了全球探索超越传统锂离子电池的新电池技术。
单质硫在常温下以S8的形式存在,在地球中储量丰富,具有价格低廉、环境友好等特点。利用硫作为正极材料的锂硫电池,其材料理论比容量和能量密度较高,分别达到1672mAh g-1和2600Wh kg-1,工作电压通常可以达到2.1V左右,被认为是现在最具研究价值和应用前景的锂二次电池体系之一。
虽然锂硫电池具有高容量、高比能量等优点,但是目前存在着活性物质利用率低、循环寿命低和安全性差等问题,这些问题严重制约着锂硫电池的发展。造成上述问题的主要原因有以下几个方面:
(1)单质硫是电子和离子绝缘体,室温电导率低(5*10-30S cm-1),由于没有离子态的硫存在,因而作为正极材料活化困难;
(2)在电极反应过程中产生的高聚态多硫化锂Li2Sn(4≤n<8)易溶于电解液中,在正负极之间形成浓度差,在浓度梯度的作用下迁移到负极,高聚态多硫化锂被金属锂还原成低聚态多硫化锂。随着以上反应的进行,低聚态多硫化锂在负极聚集,最终在两电极之间形成浓度差,又迁移到正极被氧化成高聚态多硫化锂。这种现象被称为穿梭效应,降低了硫活性物质的利用率。同时不溶性的Li2S和Li2S2沉积在锂负极表面,更进一步恶化了锂硫电池的循环性能;
(3)反应最终产物Li2S同样是电子绝缘体,会沉积在硫电极上,而锂离子在固态硫化锂中迁移速度慢,使电化学反应动力学速度变慢;
(4)硫和最终产物Li2S的密度不同,当硫被锂化后体积膨胀大约79%,易导致Li2S的粉化,引起锂硫电池的安全问题。
针对以上问题,目前主要的解决方法是正极材料、电解液和阻隔层三个方面入手。因为硫和反应产物的绝缘性,使得硫与其他多孔碳材料的复合显的尤为重要,以解决硫的不导电和体积膨胀问题。目前中空碳球或中空碳笼已被用来作为硫的载体(CN104953089A)由于碳球空腔比较大可以负载较高含量的硫,然而其绝缘的大尺寸硫影响了电极材料的导电性,进而降低了电池倍率性能。专利CN 101986443公开了锂硫电池正极材料的制备方法:利用高温高压条件下在空心纳米碳管应用物理熔融法填充硫,虽有较好循环稳定性,但其工艺过程比较繁琐,限制了其应用发展。Xin等人在《美国化学会志》2012年第134期18510页(JACS,2012,134,18510)报道的微孔碳/碳纳米管同轴材料组装小分子硫(S2-4),有效地解决多硫化锂溶解问题。然而,微小的孔不仅不利于硫渗透到材料内部,且限制了硫纳米粒子的组装量而导致其整体电池容量和放电平台偏低,从而影响了整体电池的能量密度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710318979.0/2.html,转载请声明来源钻瓜专利网。