[发明专利]一种弱短路故障测试电路及其测试方法在审
申请号: | 201710090079.5 | 申请日: | 2017-02-20 |
公开(公告)号: | CN106771985A | 公开(公告)日: | 2017-05-31 |
发明(设计)人: | 赵振宇;刘海斌;冯超超;徐实;王耀;何小威;乐大珩;余金山;马驰远;马卓;袁强 | 申请(专利权)人: | 中国人民解放军国防科学技术大学 |
主分类号: | G01R31/28 | 分类号: | G01R31/28 |
代理公司: | 北京汇思诚业知识产权代理有限公司11444 | 代理人: | 王刚,龚敏 |
地址: | 410073 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 短路 故障测试 电路 及其 测试 方法 | ||
【技术领域】
本发明涉及集成电路技术领域,尤其涉及一种弱短路故障测试电路及其测试方法。
【背景技术】
基于TSV(Through Silicon Vias,硅通孔)的三维集成电路充分利用了芯片的第三个维度,将多个裸片(Die)通过TSV进行垂直互连,这不仅缩短了互连线长度,降低了互连功耗,而且提升了芯片集成密度,是集成电路发展的必然趋势。而TSV作为多个裸片之间的信号传输通道,其可靠性直接影响了整个芯片的良品率。但由于目前TSV制备工艺尚不成熟,在芯片制造过程中衬底减薄带来的应力,TSV填充不足,绝缘层生长瑕疵和芯片堆叠时发生错位等都会引起TSV不同程度的缺陷,而这些缺陷导致的电路故障主要为短路故障和开路故障。对于开路故障的测试主要涉及到信号是否能正常传输,其测试比较简单,而对于短路故障的测试不仅涉及到信号是否能正常传输,还应该考虑其引起的漏流功耗问题,这里将考虑漏流功耗的短路故障称为弱短路故障。
关于TSV测试,可以分为绑定前TSV测试(Pre-bond TSV Testing)和绑定后TSV测试(Post-bond TSV Tesing)。绑定前TSV测试为裸片(Die)堆叠之前的测试,此时,TSV的一端在裸片内部,且与内部器件相连,而另一端裸露在裸片外,不与任何东西相接。绑定前TSV测试也就是无疵内核测试(Known Good Die,KGD),其目的是去除有问题的裸片,从而降低由于TSV制造带来的成品率下降。目前关于绑定前TSV短路故障测试的方法主要有两种,一种是通过探针卡与TSV相连接,然后打入激励进行短路故障测试,该方法主要适用于放置规整的阵列式TSV,且既需要芯片内部插入特定的测试电路,又需要芯片外部有特殊的测量仪器,测试开销较大。另一种是通过在芯片内部嵌入相应的测试电路,实现自测试,然后将自测试结果通过扫描链扫描输出,这种方法测试结构简单,测试开销小。通过电压比较的方式对绑定前TSV短路故障进行测试,这种方式的不足在于,对于弱短路故障引起的漏流功耗问题没法探测,且该电路为数模混合结构,易受外界的干扰。针对电压比较方式的不足,借鉴I/O漏电流测试的思想提出了一种基于可编程延迟线的TSV漏电流测试方法,该方法首先对TSV节点充电,然后使之浮空,这时,收集在TSV上的电荷通过TSV与衬底之间的短路电阻开始泄漏,最后通过控制采样时间来判定漏流等级,即TSV短路程度,通过可编程延迟线产生不同的采样时间来实现宽范围的漏电流测试,其漏流测试阈值(Leakage Test Threshold,LTT)范围为0.125μA-16μA。这种通过漏流大小判断TSV是否存在短路故障的方法,虽然解决了通过电压比较发觉不到的漏流功耗问题,但其测试电路面积较大,尤其是可编程延迟线所占的面积。此外,延迟线的精度也直接影响了漏流测试分辨率。
绑定后TSV测试就是在裸片堆叠之后的测试,对于TSV的测试而言,裸片堆叠之后的无疵堆叠测试(Known Good Stack,KGS)、封装后的最终测试(Final Test)和芯片使用时的内建自测试都认为是绑定后TSV测试。在芯片绑定、芯片运输和芯片使用过程中,由于绑定应力过大使侧壁绝缘层开裂、Bump未对准、芯片碰撞使得侧壁绝缘层开裂和绝缘层老化等都可能引起TSV短路故障。对于无疵堆叠测试,具体实施是通过探针与专用衬垫(Pad)接触,接收JTAG接口输出的诊断信息,然后将该信息传送给外部设备。而对于最终测试和芯片使用时的内建自测试,在芯片复位后,内部自测试电路开始工作,测试结果被直接传递到TSV冗余修复电路,进行冗余替换,实现对TSV的修复。而通过电压比较的方式对绑定后TSV短路故障进行测试,具体实现是,当TSV存在短路故障时,会引起漏电流,该漏电流可以通过电阻分压的方式将其转换成电压,然后将转换后的电压与预设的参考电压进行比较,最终诊断出是否存在短路故障。该方方法的优点在于同时可以检测开路和短路故障,但其不足在于,最小漏流测试阈值为100uA,也就是说,当短路缺陷引起的漏电流小于100μA时,该方法诊断为不存在短路故障,在最坏情况下,一个TSV引起的漏电流为100μA(为无短路故障TSV),那么104个TSV引起的漏电流就为1A,假设电源电压为1V,那么仅仅TSV带来的漏流功耗就达到了1W,而实际上一颗嵌入式DSP芯片的功耗才200mW左右,很显然这种测试结构不具有实用性。
【发明内容】
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科学技术大学,未经中国人民解放军国防科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710090079.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种高速电路板智能测试装置
- 下一篇:一种电力电子电路故障自动诊断装置