[发明专利]图像处理方法和装置有效

专利信息
申请号: 201710060897.0 申请日: 2017-01-25
公开(公告)号: CN106709532B 公开(公告)日: 2020-03-10
发明(设计)人: 刘瀚文;那彦波 申请(专利权)人: 京东方科技集团股份有限公司
主分类号: G06K9/66 分类号: G06K9/66;G06N3/08
代理公司: 北京市柳沈律师事务所 11105 代理人: 彭久云
地址: 100015 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 处理 方法 装置
【说明书】:

一种图像处理方法和图像处理装置。该图像处理方法包括:使用第一卷积神经网络提取输入的第一图像的特征,以及使用第二卷积神经网络重构并输出图像。所述第一卷积神经网络包括依次连接的多个第一卷积层和间插于相邻第一卷积层之间的多个第一池化层,所述第一卷积层每个用于产生并输出第一卷积特征;第二卷积神经网络包括依次连接的多个第二卷积层和间插于相邻第二卷积层之间的多个复合层,所述复合层为上采样层。该图像处理方法可以用于例如图像的风格迁移处理。

技术领域

发明的实施例涉及一种图像处理方法和装置。

背景技术

当前,基于人工神经网络的深度学习技术已经在诸如图像分类、图像捕获和搜索、面部识别、年龄和语音识别等领域取得了巨大进展。深度学习的优势在于可以利用通用的结构以相对类似的系统解决非常不同的技术问题。卷积神经网络(Convolutional NeuralNetwork,CNN)是近年发展起来并引起广泛重视的一种人工神经网络,CNN是一种特殊的图像识别方式,属于非常有效的带有前向反馈的网络。现在,CNN的应用范围已经不仅仅限于图像识别领域,也可以应用在人脸识别、文字识别、图像处理等应用方向。

发明内容

本发明的至少一个实施例提供了一种图像处理方法,该方法包括:使用第一卷积神经网络提取输入的第一图像的特征,以及使用第二卷积神经网络重构并输出图像。所述第一卷积神经网络包括依次连接的多个第一卷积层和间插于相邻第一卷积层之间的多个第一池化层,所述第一卷积层每个用于产生并输出第一卷积特征;第二卷积神经网络包括依次连接的多个第二卷积层和间插于相邻第二卷积层之间的多个复合层,所述复合层为上采样层;所述第一卷积层的数量与所述第二卷积层的数量相等,最后的第一卷积层的输出被连接到最初的第二卷积层,且所述多个第二卷积层中除最初的层级外,至少之一接收对应的所述第一卷积层输出的第一卷积特征,且融合同一层级的复合层的输出以及对应的所述第一卷积层输出的第一卷积特征以得到其输出数据。

例如,在至少一个实施例的图像处理方法中,所述多个第二卷积层中除最初的层级外,每个都接收对应的所述第一卷积层输出的第一卷积特征,且融合同一层级的复合层的输出以及对应的所述第一卷积层输出的第一卷积特征以得到其输出数据。

例如,在至少一个实施例的图像处理方法中,所述复合层每个获取被输入到其中的第一数量的输入图像并将这些输入图像的像素值交织以产生所述第一数量的输出图像。

例如,根据至少一个实施例的图像处理方法,还包括使用第三卷积神经网络提取输入的第三图像的特征,其中,所述第三卷积神经网络包括依次连接的多个第三卷积层和间插于相邻第三卷积层之间的多个第三池化层,每级所述第三卷积层用于产生并输出第三卷积特征,所述第三卷积层的数量与所述第一卷积层的数量相等,并且所述多个第二卷积层中除最初的层级以及连接到所述第一卷积层的层级外,至少之一接收对应的所述第三卷积层输出的第三卷积特征,且融合其同一层级的复合层的输出以及对应的所述第三卷积层输出的第三卷积特征以得到其输出数据。

例如,根据至少一个实施例的图像处理方法,还包括对于所述多个第二卷积层中至少之一,选择使其接收对应的所述第一卷积层或对应的所述第三卷积层的输出,由此选择对应的所述第一卷积层输出的第一卷积特征或对应的所述第三卷积层输出的第三卷积特征与同一层级的复合层的输出融合以得到其输出数据。

例如,根据至少一个实施例的图像处理方法,还包括对于所述多个第二卷积层中每个,都选择使其接收对应的所述第一卷积层或对应的所述第三卷积层的输出,由此选择对应的所述第一卷积层输出的第一卷积特征或对应的所述第三卷积层输出的第三卷积特征与同一层级的复合层的输出融合以得到其输出数据。

例如,在至少一个实施例的图像处理方法中,所述第一卷积特征是内容特征,所述第三卷积特征是风格特征;或者,所述第一卷积特征是风格特征,所述第三卷积特征是内容特征。

例如,在至少一个实施例的图像处理方法中,所述第一卷积神经网络和所述第三卷积神经网络的构造相同。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于京东方科技集团股份有限公司,未经京东方科技集团股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710060897.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top