[发明专利]目标检测方法和装置、神经网络训练方法和装置在审

专利信息
申请号: 201611161693.8 申请日: 2016-12-15
公开(公告)号: CN106778867A 公开(公告)日: 2017-05-31
发明(设计)人: 肖特特;茅佳源 申请(专利权)人: 北京旷视科技有限公司;北京小孔科技有限公司
主分类号: G06K9/62 分类号: G06K9/62;G06N3/02
代理公司: 北京市柳沈律师事务所11105 代理人: 于小宁,张晓明
地址: 100080 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 目标 检测 方法 装置 神经网络 训练
【说明书】:

本公开提供了一种基于神经网络的目标检测方法和装置、以及用于目标检测的神经网络的训练方法和装置。所述目标检测方法,包括:获取包含目标的待检测图像;利用预先训练的第一神经网络获取所述待检测图像的第一特征信息,利用预先训练的第二神经网络获取所述待检测图像的第二特征信息;组合所述第一特征信息和所述第二特征信息,获取组合特征信息;以及利用所述第二神经网络,基于所述组合特征信息,获取目标检测结果,其中,所述第二神经网络的层数大于所述第一神经网络的层数,并且所述第一特征信息为热度图特征信息,所述第二特征信息为图片特征信息。

技术领域

本公开涉及图像处理领域,更具体地,本公开涉及基于神经网络的目标检测方法和装置、以及用于目标检测的神经网络的训练方法和装置。

背景技术

目标检测是计算机视觉领域中一个基础性的研究课题,其在人脸识别、安全监控以及动态追踪等很多方面都有广泛的应用前景。目标检测是指对于任意一幅给定的图像,检测和识别其中特定的目标(例如行人),并返回目标的位置、大小信息,例如输出包围目标的边界框。目标检测是一个复杂的具有挑战性的模式检测问题,一方面由于目标的细节变化、遮挡等内在的变化,另外一方面由于成像角度、光照影响、成像设备的焦距、成像距离、图像获得的途径不同等外在条件变化,都会导致目标检测的困难和精度降低。

神经网络是一种大规模、多参数优化的工具。依靠大量的训练数据,神经网络能够学习出数据中难以总结的隐藏特征,从而完成多项复杂的任务,如人脸检测,图片分类,物体检测,动作追踪,自然语言翻译等。神经网络已被人工智能界广泛应用。当前,诸如行人检测的目标检测中最广泛应用的是卷积神经网络。困扰现今行人目标检测方法的主要有两个问题:一是会产生大量的“假阳性”探测结果,即,将非目标区域标记为目标;二是由于光照、目标姿态等影响,部分目标无法被神经网络自动检测出。这是由于当前用于目标检测的神经网络的训练以及检测过程中,往往都直接生成目标在图片中的位置,没有充分考虑对这一过程的拆分和对网络的迭代式训练,也没有考虑其他能够辅助训练和提高检测精度的因素。

发明内容

鉴于上述问题而提出了本公开。本公开提供了一种基于神经网络的目标检测方法和装置、以及用于目标检测的神经网络的训练方法和装置,通过利用位置信息辅助生成热度图的第一神经网络训练,之后利用热度图辅助生成目标位置的第二神经网络训练,并且进一步迭代第一神经网络训练和第二神经网络训练直到获得训练好的神经网络,使得训练好的神经网络对于待检测的图像执行热度图和目标位置检测,从而实现更高的检测精度。

根据本公开的一个实施例,提供了一种目标检测方法,包括:获取包含目标的待检测图像;利用预先训练的第一神经网络获取所述待检测图像的第一特征信息,利用预先训练的第二神经网络获取所述待检测图像的第二特征信息;组合所述第一特征信息和所述第二特征信息,获取组合特征信息;以及利用所述第二神经网络,基于所述组合特征信息,获取目标检测结果,其中,所述第二神经网络的层数大于所述第一神经网络的层数,并且所述第一特征信息为热度图特征信息,所述第二特征信息为图片特征信息。

此外,根据本公开的一个实施例的目标检测方法,还包括:训练所述第一神经网络和所述第二神经网络。

此外,根据本公开的一个实施例的目标检测方法,其中所述训练所述第一神经网络和所述第二神经网络包括:利用标注有训练目标的训练图像,调整所述第一神经网络的第一网络参数以训练所述第一神经网络,直到所述第一神经网络的第一损失函数满足第一预定阈值条件,获得训练中的所述第一神经网络;利用所述训练图像、以及所述第一神经网络对于所述训练图像输出的训练用第一特征信息,调整所述第二神经网络的第二网络参数以训练所述第二神经网络,直到所述第二神经网络的第二损失函数满足第二预定阈值条件,获得训练中的所述第二神经网络。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京旷视科技有限公司;北京小孔科技有限公司,未经北京旷视科技有限公司;北京小孔科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611161693.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top