[发明专利]基于外辐射源联合时延与多普勒频率的直接跟踪方法有效
申请号: | 201610257109.2 | 申请日: | 2016-04-22 |
公开(公告)号: | CN105929378B | 公开(公告)日: | 2018-03-16 |
发明(设计)人: | 王云龙;王鼎;于宏毅;吴瑛;杨宾;唐涛;吴志东;吴江 | 申请(专利权)人: | 中国人民解放军信息工程大学 |
主分类号: | G01S7/41 | 分类号: | G01S7/41;G06T7/20 |
代理公司: | 郑州大通专利商标代理有限公司41111 | 代理人: | 陈大通 |
地址: | 450000 河*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 辐射源 联合 多普勒 频率 直接 跟踪 方法 | ||
技术领域
本发明涉及外辐射源定位跟踪技术领域,特别涉及一种基于外辐射源联合时延与多普勒频率的直接跟踪方法。
背景技术
外辐射源无源定位与跟踪,指的是利用非合作的第三方辐射源(例如AM/FM信号、普通/数字电视信号等)作为目标的照射源,通过对直达波及反射回波进行处理,以得到时延、频率等相关参数信息,进而实现对目标的定位与跟踪。利用第三方的非合作照射源对目标进行探测,不仅能够实现对隐形目标和静默目标的探测、定位与跟踪,同样也可以用于对目标的成像与识别。是诸多军用和民用应用领域的重要组成部分,如电子对抗、雷达信号处理、空中交通管制、无线电监测、移动通信、遥测与导航等。
目前外辐射源无源定位与跟踪采用的体制是传统的无源定位与跟踪体制,其处理流程为首先进行参数估计,如到达角度、到达时间、到达时间差、多普勒频差、接收信号强度或多种参数联合估计,再通过对获取的参数进行对非线性方程的求解获得目标的位置估计。若目标运动,除了需要考虑目标的坐标信息外,还需要考虑目标的速度信息及其带来的状态变化;目标运动中的参数信息及其变化率均是状态变量的的非线性函数,必须采用非线性滤波算法,如卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波、粒子滤波算法等,否则定位系统的性能将急剧下降。寻找一种稳健且收敛速度快的跟踪滤波算法是辐射源目标跟踪中需要解决的首要问题,传统的目标跟踪处理方法为首先进行参数估计形成目标的点迹,再利用滤波算法对目标的航迹进行跟踪处理。由于参数估计与目标滤波跟踪相分离,无法保证测量的参数结果与真实目标航迹信息相匹配,同时参数估计的误差可能在后续的处理过程中被进一步放大且很难被消除从而导致整个数据处理过程中不可避免地存在信息损失,所以无法获得最优的估计性能。从信息论的角度来看,从原始接收数据到最终的处理结果,增加中间的处理环节将引入更多的不确定性,导致部分信息的损失,所以传统的目标跟踪处理方法很难取得最优的结果。为了克服传统目标跟踪方法的缺点,以色列学者A.J.Weiss和Alon Y.Sidi学者提出了单步跟踪(直接目标跟踪)方法,该方法直接从接收信号数据中获取目标的航迹信息,无需参数估计步骤,避免了误差的引入,提高了目标跟踪的精度,该方法仅考虑单根天线时的情况,未对阵列天线的情况进行研究。
发明内容
针对现有技术中的不足,本发明提供一种基于外辐射源联合时延与多普勒频率的直接跟踪方法,利用接收底层数据构造粒子后验概率权重,避免由参数估计误差引起权重与真实位置失配的问题,减少了目标跟踪信息的损失,跟踪精度明显提升,且对信噪比具有较强的鲁棒性。
按照本发明所提供的设计方案,一种基于外辐射源联合时延与多普勒频率的直接跟踪方法,具体包含如下步骤:
步骤1.外辐射源场景下利用状态转移矩阵F构建目标运动状态方程为:
xk=Fxk-1+vk-1,
其中,为状态向量,xk,yk与表分别示在第k次观测间隙内目标辐射源的位置坐标和相应的速度分量;Tr表示采样周期,状态转移矩阵F为:
,
并定义初始状态与跟踪状态时的条件概率密度函数;结合粒子滤波方法构建后验概率加权迭代方程为:
,
其中,zk表示k时刻的观测量;
步骤2.对L个观测站的双通道接收系统进行时间同步,并根据Nyquist采样定理采集外辐射源的直达波信号以及经目标反射的回波信号,获得多站接收的信号时域模型;
步骤3.针对信号时域模型,对各站双通道接收的时域数据分别计算其傅立叶系数,得到阵列信号频域模型;
步骤4.针对阵列信号频域模型,每个观测站将所获得的阵列信号频域数据传输至中心站,中心站将每个站传输的阵列信号频域数据按照观测站的顺序进行堆栈排列,构造高维阵列信号频域模型;
步骤5.针对高维阵列信号频域模型,在中心站对高维阵列信号频域数据构造高斯最大似然函数,并构造包含回波时延、多普勒信息以及直达波时延信息的数据信息矩阵;
步骤6.数据信息矩阵的最大特征值作为粒子滤波的后验概率权重;根据粒子滤波理论,设定粒子数量及初始权重,通过迭代更新粒子的后验概率权重并进行重采样,所得最终粒子的均值作为该时刻目标跟踪的结果。
上述的,步骤2中,第l个k时刻观测站的所接收到的信号时域模型为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军信息工程大学,未经中国人民解放军信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610257109.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种农业旱情遥感监测方法
- 下一篇:一种动力锂离子电池健康状态估算方法