[发明专利]一种基于CNN的鳞翅目昆虫种类自动鉴别方法在审
申请号: | 201610195201.0 | 申请日: | 2016-03-30 |
公开(公告)号: | CN107292314A | 公开(公告)日: | 2017-10-24 |
发明(设计)人: | 竺乐庆;马梦园;张真;张苏芳;王勋;王慧燕;刘福;孔祥波 | 申请(专利权)人: | 浙江工商大学;中国林业科学研究院森林生态环境与保护研究所 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 310018 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 cnn 鳞翅目 昆虫 种类 自动 鉴别方法 | ||
技术领域
本发明涉及一种基于CNN的昆虫种类自动鉴别方法,特别是对鳞翅目昆虫的自动鉴定,CNN是近几年来机器学习领域的研究热点,被广泛应用于在视觉对象识别、自然语言处理、语音分类等不同领域并取得了不俗的性能。本发明将CNN这种深度学习神经网络技术应用于昆虫图像的自动识别,用该技术设计的软件系统可应用于植物检疫、植物病虫害预测预报及其防治等领域,或可作为重要组成部分用于生态信息学研究的借鉴和参考。该项技术可被海关、植物检疫部门、农林病虫害防治等部门所采用。可为不具备有关专业知识的基层工作人员或农民提供自动鉴别的手段。
背景技术
昆虫与人类的关系复杂而密切,一些种类给人类的生活和生产造成巨大的危害和损失,一些则给人类带来生态或经济上的重大利益。为了减轻害虫对农作物的影响,合理利用益虫,首先我们必须准确识别出昆虫的种类。然而,由于昆虫种类繁多,进化换代快,要识别昆虫却非易事。目前具备昆虫分类专业知识的昆虫研究者相对于昆虫分类的需求来说存在较大缺口,有些物种甚至在人类能对其命名和描述之前就灭绝了,而这种情况正变得越来越严峻。为解决昆虫分类鉴定需求和分类人员数量不足之间的矛盾,需要找到能辅助或代替人为鉴别昆虫的方法。近几十年来,图像处理与模式识别技术发展较快,因此采用这些技术来实现计算机辅助分类(CAT)便成为可能。使用先进计算机技术进行昆虫自动或辅助种类鉴定,客观性强,可以克服人为鉴定时主观情绪影响所带来的误判。
计算机视觉技术的出现和快速发展使得计算机处理和分析图像的能力大大增强,一些计算机科学家和昆虫学家开始尝试使用计算机图像处理、模式识别等技术实现昆虫种类的自动鉴定。英国政府于1996年发起DAISY(Digital Automated Identification SYstem)研究工程,在全世界范围内掀起了有关昆虫自动识别研究的热潮。DAISY项目后受达尔文项目资助,其功能被不断完善和扩展,甚至被用于鉴定活体蛾类。美国新墨西哥州立大学的Jeffrey Drake博士也致力于使用高级数字图像分析和理解技术来开发从大范围的样本中快速鉴别出昆虫种类的软件系统,其研究受美国动植物卫生服务局和美国国家航空航天局资助。美国俄勒岗州立大学的植物生理学与植物学系的Andrew Moldenke等人开发了一套称为BugWing的基于网络的计算机辅助昆虫鉴别工具,利用昆虫的翅脉特征对具有透明翅的昆虫实现半自动的识别。2001年Steinhage等开发出的ABIS(The Automated Bee Indentification System)利用前翅的几何特征和外观特征鉴别蜜蜂,该系统需要手动定位昆虫的位置以及对前翅的先验专家知识。Al-Saqer等用归一化交叉相关、Fourier描述子、Zernike矩、串匹配和区域属性等五种方法相结合的处理方式实现了核桃象鼻虫的识别。美国华盛顿大学的Larios等近几年来一直致力于对石蝇幼虫种类的图像识别研究,提出了局部外观特征直方图串接,Haar随机森林提取特征、层叠判据树、层叠空域金字塔核等特征提取或分类方法,通过鉴定石蝇的种类和数量来监测河流等水环境的生态与健康情况。新西兰怀卡托大学的Mayo和Watson则使用ImageJ图像处理工具包与机器学习工具包WEKA对活蛾的种类识别进行了研究,使用WEKA中的SVM分类器进行10折交叉验证在含35种活蛾的数据集中取得平均85%的识别率。
在国内,有代表性的昆虫图像自动识别研究小组为中国农业大学的IPMIST(植保生态智能技术系统)实验室,该实验室的成员先后对昆虫数学形态学、昆虫图像数字技术、昆虫数字图像分割技术、昆虫图像几何形状特征的提取技术、以及基于图像的昆虫远程自动识别系统等方面展开了研究,提出了基于颜色特征的昆虫自动鉴定、基于数学形态学的昆虫自动分类等多种方法。
卷积神经网络(CNN)是一种用可训练的滤波器组与局部邻域池化操作交替使用于原始输入图像上并得到渐次复杂的层次化图像特征的一种深度学习模型。辅以适当的正则化手段,CNNs可以在不依赖于任何手工提取特征的情况下在视觉对象识别任务中取得非常理想的性能。迄今为至,CNN已被应用于手写数字识别,图像识别,图像分割、图像深度估计等诸多领域,相对于已有的模式识别和图像处理方法,性能上取得了相当大的提升。昆虫作为一种特殊的视觉对象,用CNN实现其种类的识别也必然是一种顺利成章的选择。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工商大学;中国林业科学研究院森林生态环境与保护研究所,未经浙江工商大学;中国林业科学研究院森林生态环境与保护研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610195201.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:纹理图像的特征提取方法和系统
- 下一篇:系统及其指标优化方法及装置