[发明专利]Ti3O5/TiO2混晶纳米纤维的制备方法有效
申请号: | 201610111259.2 | 申请日: | 2016-02-29 |
公开(公告)号: | CN105692694B | 公开(公告)日: | 2017-06-13 |
发明(设计)人: | 马晓华;李健;雷毅敏;宋芳;王湛 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | C01G23/047 | 分类号: | C01G23/047;B01J21/06;B82Y40/00 |
代理公司: | 陕西电子工业专利中心61205 | 代理人: | 王品华,朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | ti sub tio 纳米 纤维 制备 方法 | ||
技术领域
本发明属于纳米材料领域,具体涉及氧化钛体系纳米混晶材料的制备方法,可用于制备新型光催化剂。
技术背景
在光催化领域,一般使用贵金属纳米粒子修饰TiO2纳米材料,合成诸如Pt/TiO2混相光催化剂,但这类催化剂存在成本过高,且贵金属粒子易脱落的问题,因此不能广泛应用于工业生产。TinO2n-1(n=3~7)是一种还原性氧化钛材料,由于内部存在TiIII/TiIV键的混合作用,具有特殊的光电和磁学性能,可用于光催化、记忆开关和燃料电池等领域。由于TinO2n-1的电学特性与金属类似,有望代替贵金属颗粒,与TiO2材料复合,成为新型TinO2n-1/TiO2混相纳米催化材料。以往研究表明,TinO2n-1相中的n值与其电阻率呈反比关系,Ti3O5被认为拥有TinO2n-1相中最低的电阻率。因此,如果Ti3O5与TiO2形成混相得到Ti3O5/TiO2界面,则光致载流子在界面处的传输遇到的阻碍将大大降低,有利于提高光催化效率。
截至目前,许多研究者采用了以TiO2为前驱体制备TinO2n-1/TiO2混相材料。2012年C.Tang等人采用金红石粉末为前驱体,将其在NH3气氛下加热至1050℃,成功获得了Ti4O7/Ti5O9/Ti6O11/TiO2的混相微孔纳米球,参见C.Tang,D.Zhou,Q.Zhang.Synthesis and characterization of Magnéli phases:Reduction of TiO2in a decomposed NH3atmosphere[J].Materials Letters,2012,79:42-44。这种方法制备的混相材料具有较高的电导率,尺寸均匀且形态完整。然而,制备过程中加热温度高,且使用了NH3气氛,因此该合成法具有一定的安全隐患,而且所获得的混相材料比表面积较低,不适合用作催化剂材料。2011年N.Stem等人以C掺杂的非晶TiO2薄膜为原料,通过在水蒸气和N2的混合气氛下加热至1000℃保温2小时后得到了TiO2/Ti3O5混相纳米纤维,参见N.Stem,E.F.Chinaglia,S.G.dos Santos Filho.Microscale meshes of Ti3O5nano-and microfibers prepared via annealing of C-doped TiO2thin films[J].Materials Science and Engineering B,2011,176:1190-1196。这种方法制备过程较为复杂,获得的混相纳米纤维数量少且形态不规则,无法大规模批量生产。因此,寻求安全可靠、工艺简单可控 的方法,合成TiO2/Ti3O5混相纳米材料是亟待解决的问题。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种Ti3O5/TiO2混晶纳米纤维的制备方法,一方面避免使用气体,简化工艺;另一方面,有效的调控Ti3O5/TiO2混晶纳米纤维的尺寸。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610111259.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种硫化铋半导体薄膜的制备方法
- 下一篇:一种氧化锌脱硫剂及其制备方法
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO