[发明专利]基于核空间自解释稀疏表示的分类器设计方法有效

专利信息
申请号: 201610070445.6 申请日: 2016-01-31
公开(公告)号: CN105740908B 公开(公告)日: 2017-05-24
发明(设计)人: 刘宝弟;王立;韩丽莎;王延江 申请(专利权)人: 中国石油大学(华东)
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 青岛联信知识产权代理事务所37227 代理人: 徐艳艳,高洋
地址: 266580 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 空间 解释 稀疏 表示 分类 设计 方法
【说明书】:

技术领域

发明隶属于模式识别技术领域,具体地说,涉及一种基于核空间自解释稀疏表示的分类器设计方法。

背景技术

模式识别过程通常包含两个阶段,第一个阶段是特征提取,另一个是构造分类器和标签预测。分类器设计(Classifier Design)作为模式识别系统的一个重要环节,一直以来都是模式识别领域研究的核心问题之一。

目前,主要的分类器设计方法有以下几种。

1、支持向量机方法(英文:SupportVector Machine)

支持向量机方法是Corinna Cortes和Vapnik等于1995年首先提出来的,它旨在通过最大化类别间隔建立最优分类面。该类方法在解决小样本、非线性及高维模式识别中表现出许多特有的优势。然而,该类分类器只有少量的边界点(即支持向量)参与到分类面建立,如果边界点分布的位置不好,那么对于分类是十分不利的。

2、基于稀疏表示的多类分类方法(英文:Sparse Representation based Classifier)

基于稀疏表示的多类分类方法是由J.Wright等人于2009年提出的,该分类方法首先将测试样本在所有训练集上进行稀疏编码,然后根据产生最小编码误差的类别决定分类结果。该分类方法在多类分类中取得了很大的成功,然而,该分类方法没有训练的过程,直接将每类训练样本构造相应子空间,并没有考虑该分类样本中每个个体对构造子空间的贡献,容易产生较大的拟合误差。

3、基于协同表示的多类分类方法(英文:Collaborative Representation based Classifier)

基于协同表示的多类分类方法是由zhang等人于2011年提出,该分类方法首先将测试样本在所有训练集上进行协同表示,然后根据产生最小编码误差的类别决定分类结果。该分类方法在某些数据集上性能优于基于稀疏表示的多类分类方法。同样地,该分类方法没有训练的过程,直接将每类训练样本构造相应子空间,容易产生较大拟合误差,导致分类性能不高。

4、基于词典学习的多类分类方法

基于词典学习的多类分类方法是由Yang等人于2010年提出,该分类方法弥补了传统的基于稀疏表示的多类分类方法容易产生较大拟合误差导致分类准确率不高的问题,然而,该分类方法只能在欧式空间中进行,很难处理具有非线性结构的数据,使其使用范围大大受限。

由上可知,现有的分类器设计方法均存在拟合误差比较大以及特征的非线性结构缺失而导致分类精确度不高的问题。

发明内容

本发明针对现有分类器设计方法设计的分类器存在拟合误差大、精确度不高的上述不足,提供一种基于核空间自解释稀疏表示的分类器设计方法。一方面,本发明考虑了特征的非线性结构,能够更加精确的对特征进行稀疏编码,另一方面,本发明通过学习的方式训练词典,有效地降低拟合误差。从而大大提升分类器的性能。

本发明的技术方案是:一种基于核空间自解释稀疏表示的分类器设计方法,含有以下步骤:

步骤一:设计分类器,其步骤为:

(一)读取训练样本,训练样本一共C类,定义X=[X1,X2,…,Xc,…,XC]∈RD×N表示训练样本,D是人脸特征维度,N是训练样本总的数目,X1,X2,…,Xc,…,XC分别表示第1,2,…,c,…,C类样本,定义N1,N2,…,Nc,…,NC分别表示每类训练样本数目,则N=N1+N2+…+Nc+…+NC

(二)对训练样本进行二范数归一化,得到归一化的训练样本;

(三)依次取出训练样本中的每一类,并对该类样本训练词典,训练词典的过程为:

(1)取出第c类样本Xc,将Xc映射到核空间φ(Xc);

(2)根据φ(Xc)训练基于稀疏编码算法的词典Bc,Bc表示第c类样本学习到的词典,该词典的训练需要满足约束条件,所述约束条件的目标函数为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东),未经中国石油大学(华东)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610070445.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top