[发明专利]一种E-learning平台下学习资源个性化推荐系统及方法有效

专利信息
申请号: 201610050699.1 申请日: 2016-01-25
公开(公告)号: CN105718582B 公开(公告)日: 2020-05-12
发明(设计)人: 付芬;豆育升;卢国丽 申请(专利权)人: 重庆邮电大学
主分类号: G06F16/9535 分类号: G06F16/9535
代理公司: 重庆市恒信知识产权代理有限公司 50102 代理人: 刘小红
地址: 400065 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 learning 平台 学习 资源 个性化 推荐 系统 方法
【说明书】:

发明请求保护一种E‑learning平台下学习资源个性化推荐系统及方法。系统主要包括:管理模块:主要用于对用户信息进行管理和学习资源的管理;推荐策略模块,用于向登录学习平台的用户推荐学习资源;数据库模块,用于存放所需要的包括信息表在内的各种基础数据。方法的步骤包括:用户登录学习系统,包括对学习资源进行学习和评分,根据本发明优化后的协同过滤推荐算法为用户推荐出可能感兴趣的学习资源。本发明优化后的方法解决了传统的协同过滤算法中由于评分矩阵稀疏带来的相似性计算不准确问题,此外,考虑了用户兴趣漂移,引入时间因子,最终提高了学习资源个性化推荐的效率和准确度。

技术领域

本发明属于E-learning平台下数据挖掘领域,具体涉及一种E-learning平台下学习资源个性化推荐系统及方法。

背景技术

随着互联网的发展,学习活动从教室扩展到Internet,出现了很多E-learning平台,但是现如今的在线学习系统还存在很多的缺陷:教学资源利用率不高;学习资源数不胜数,学习者如大海捞针一般无法快速地找到所需的资源;学习者需要手动输入描述词汇进行搜索,系统不能根据用户自身的信息主动推荐。这些缺陷使得网络学习失去了原有的优势,因此,急需将个性化服务融入到E-learning平台中。这样通过系统的主动推送使用户能够快速、准确地获取所需的资源,而不必自己去检索、寻找资源,从而提高了用户找寻资源的效率,为用户节省大量的时间。另外,通过个性化推荐技术,可以保证推荐资源的质量,提高资源利用率,为处于“学习迷航”的学习者指明学习方向。

个性化推荐技术在电子商务领域的应用非常成功,而应用于学习平台的个性化推荐仍然是理论大于实践,协同过滤推荐算法不会受到推荐资源的复杂性和多样性的限制,但是由于协同过滤推荐算法中存在的数据稀疏性问题会在很大程度上导致推荐资源的不准确性。因此针对以上描述的问题和缺陷,广大用户迫切需要能够高效的主动推荐学习资源的个性化系统。

发明内容

针对以上现有技术的不足,提出了一种E-learning平台下学习资源个性化推荐系统及方法。。本发明的技术方案如下:一种E-learning平台下学习资源个性化推荐系统,其包括:管理模块、推荐策略模块及数据库模块,其中

管理模块:主要用于对用户信息进行管理和学习资源的管理;

推荐策略模块,用于向登录学习平台的用户推荐学习资源;

数据库模块,用于存放系统所需要的包括信息表在内的各种基础数据,数据库模块与管理模块之间是数据之间的存放关系,管理模块中产生的数据表都会存入数据库中,管理模块中的用户信息、学习资源信息各自的管理都会产生相应的数据表。

进一步的,所述管理模块,包括用户管理模块和学习资源管理模块,所述用户管理模块主要是对用户的登录、注册信息进行管理;学习资源管理模块主要包括学习资源的类型管理以及用户对资源的操作,学习资源的类型主要包括视频资源和文本资源,所述的用户对资源的操作,主要有评分、点赞、下载以及分享。

进一步的,所述推荐策略模块,主要包括热门学习资源推荐模块和协同过滤推荐模块:其中

a)热门学习资源推荐模块,主要针对新用户,当新用户初次进入系统后,通过热门学习资源排行对新用户进行推荐,并要求新用户对热门学习资源进行评分,初次预测用户的学习兴趣;

b)协同过滤推荐模块,主要针对的是非新用户,通过分析用户对学习资源的评分来计算用户间的相似度,寻找出最近邻居集,根据相似用户的学习经历对目标用户进行推荐;

进一步的,所述数据库模块存放有包括:用户信息表、用户对资源学习的数据表格信息、学习资源类型表、资源评分表。

进一步的,所述协同过滤推荐模块采用协同过滤推荐算法,包括步骤:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610050699.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top