[发明专利]一种CaCu3Ti4O12薄膜的制备方法有效
申请号: | 201610031323.6 | 申请日: | 2016-01-18 |
公开(公告)号: | CN105603395B | 公开(公告)日: | 2018-07-27 |
发明(设计)人: | 林媛;姚光;高敏 | 申请(专利权)人: | 电子科技大学 |
主分类号: | C23C18/12 | 分类号: | C23C18/12 |
代理公司: | 电子科技大学专利中心 51203 | 代理人: | 吴姗霖 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 cacu sub ti 12 薄膜 制备 方法 | ||
一种CaCu3Ti4O12薄膜的制备方法,属于功能材料技术领域。包括以下步骤:1)通过高分子辅助沉积法配制含钙铜钛的前驱液;2)将斜切的LaAlO3基片在800~1000℃下热处理1~6小时,得到表面为台阶结构的基片;3)采用旋涂法将前驱液均匀涂覆于步骤2)处理后的基片表面,烘干,得到含钙铜钛的薄膜样品;4)对上步得到的含钙铜钛的薄膜样品热处理,随炉冷却至室温,得到CaCu3Ti4O12薄膜。本发明通过不同斜切角度的斜切基片调控CCTO薄膜的应力,使得制得的薄膜的介电损耗明显降低;且方法简单,成本低廉,具有良好的工艺可控性和重复性,有利于大规模批量化生产。
技术领域
本发明属于功能材料技术领域,具体涉及一种通过调控LaAlO3斜切基片应力来制备低介电损耗CaCu3Ti4O12薄膜的方法。
背景技术
高介电常数材料(ε﹥1000)的开发和研究对实现大容量电容器的应用和电子元件的小型化、微型化具有重要的意义。迄今为止,一些高介电常数材料已经在实际器件中得到应用。2000年人们发现CaCu3Ti4O12(CCTO)材料在1kHz 交流电场作用下介电常数可达到12000,且在一定的温度(100K~600K)和频域 (0Hz~1MHz)范围内介电常数基本保持不变。CCTO的高介电特性一经发现,立即引起了人们的广泛关注,但是CCTO在具有高介电常数的同时也具有较大的介电损耗,这也限制了CCTO的广泛应用。CCTO多晶陶瓷样品在室温下损耗为0.067(100kHz)、0.1(1kHz),CCTO薄膜室温下损耗为0.2(10~100kHz),单晶样品的损耗则更高。然而,在实际应用中,电介质材料的损耗一般需要控制在0.05以下,因此在保持高介电常数的同时,如何降低CCTO材料的介电损耗对于实际应用有着重大的意义。
目前,制备CaCu3Ti4O12(CCTO)薄膜常见的方法有物理气相沉积(如射频磁控溅射、激光脉冲沉积和分子束外延等)、化学气相沉积、溶胶凝胶法和高分子辅助沉积法等。高分子辅助沉积法首先用水溶性的高分子将金属离子绑定形成均匀稳定的前驱物溶液,然后将前驱物溶液均匀涂覆到基片上,最后通过热处理使高分子与金属离子之间的键合断开,高分子分解而形成固体薄膜。相较于制备 CCTO薄膜的物理气相沉积和化学气相沉积方法而言,高分子辅助沉积法对真空度要求不高,且具有操作简便、设备简单、低成本等优点。相较于溶胶凝胶方法,高分子辅助沉积法避免了前驱物的水解和缩合反应,因而更容易获得精确化学计量比的稳定前驱液。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610031323.6/2.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
C23C 对金属材料的镀覆;用金属材料对材料的镀覆;表面扩散法,化学转化或置换法的金属材料表面处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆
C23C18-00 通过液态化合物分解抑或覆层形成化合物溶液分解、且覆层中不留存表面材料反应产物的化学镀覆
C23C18-02 .热分解法
C23C18-14 .辐射分解法,例如光分解、粒子辐射
C23C18-16 .还原法或置换法,例如无电流镀
C23C18-54 .接触镀,即无电流化学镀
C23C18-18 ..待镀材料的预处理
- 一种低温合成CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>陶瓷粉体的方法
- 一种高介电常数CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>杂化修饰微粒的电流变液及其制备方法
- 一种压敏材料及制备方法
- 一种高介电常数类钙钛矿型CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>(CCTO)压敏材料的制备方法
- CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>陶瓷粉体的制备方法
- 一种制备CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>陶瓷材料的方法
- 纳米CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>陶瓷粉体的制备方法及应用
- 一种CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>的制备方法
- 一种CaCu3Ti4012介电复合材料及其制备方法
- 一种高介电常数低损耗CaCu3Ti4O12压敏陶瓷材料的制备方法
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法