[发明专利]一种Fast RVM污水处理故障诊断方法有效
申请号: | 201610009907.3 | 申请日: | 2016-01-04 |
公开(公告)号: | CN105487526B | 公开(公告)日: | 2019-04-09 |
发明(设计)人: | 许玉格;邓文凯;陈立定 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G05B23/02 | 分类号: | G05B23/02 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 陈宏升 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 故障诊断 向量机 多分类模型 数据扩充 采样 聚类 污水 样本 污水处理 虚拟 污水生化处理过程 污水生化处理系统 数据压缩模块 归一化处理 不平衡性 数据压缩 样本属性 归一化 建模 量纲 一对一 剔除 | ||
本发明公开的本发明公开了一种Fast RVM污水处理故障诊断方法,包括以下顺序的步骤:1)剔除掉污水数据中待识别样本中属性不完整的样本,由于各样本属性量纲的不同,对其进行归一化处理,归一化到[0,1]区间中;2)基于聚类的快速相关向量机多数类数据压缩模块;3)虚拟少数类向上采样的少数类数据扩充模块;4)“一对一”的快速相关向量机多分类模型;5)快速相关向量机污水故障诊断建模。本发明通过基于聚类的快速相关向量机对多数类数据压缩和虚拟少数类向上采样方法对少数类数据扩充,降低了污水数据的不平衡性,同时采用Fast RVM对污水生化处理过程建立多分类模型,有效提高了对污水生化处理系统的故障诊断精度。
技术领域
本发明涉及污水处理领域,特别涉及一种Fast RVM污水处理故障诊断方法。
背景技术
随着我国工农业经济的迅猛发展,城市进程不断加快,工业、农业废水及生活污水排放量与日俱增,不仅加剧了市政污水处理负荷,还使得人类赖以生存的水资源遭到了极大的破坏,各大湖泊出现了不同程度的富营养化,城市水环境安全已经成为了大众关注的焦点。污水处理厂作为自然水体的关键保护屏障,其运行好坏将直接影响水环境的安全程度。污水生化处理工艺复杂,影响因素非常多,污水处理厂在实际运行过程中难以保持长期稳定的运行,一旦发生运行故障常常会引起出水水质不达标、运行费用增高和环境二次污染等严重问题。因此,必须对污水处理厂运行状态进行监控,及时诊断出污水处理过程故障并予以处理。污水处理运行状态的故障诊断本质上是一个模式分类问题,而在实际状态运行分类中,常常会遇到污水数据集的分布不均衡问题,传统的机器学习方法在用于不平衡数据分类时,模型分类正确率无法满足要求,给污水生化处理的故障诊断带来了极大的困难。
故障诊断技术是一种通过可见、可测量的关键指标所反映的异常状态,找出具体故障和原因,并提出相应的解决措施的技术。故障诊断技术产生之初,是基于传感器和动态测试技术,通过信号处理技术进行设备的故障分析与诊断。随着科技的不断进步,生产设备或工艺系统朝着复杂化、多元化、大型化发展,传统的故障诊断技术已不能满足现代设备的诊断需求。而人工智能发展为故障诊断注入了新的活力,通过组织相关领域的专业知识、模拟人类思维的推理方式、建立故障诊断模型,将故障诊断技术引向智能化、系统化、网络化,它在故障诊断领域中的进一步应用,推动了智能故障诊断技术的迅速发展。目前,在污水生化处理系统故障诊断方面,国内外专家学者所采用的技术主要有,基于知识的专家系统技术、支持向量机方法、粗糙集理论、基于神经网络的方法等。但是这些技术也存在一定的局限性,专家系统存在知识获取瓶颈问题,若建立的专家知识库不完备,则有可能导致推理混乱;支持向量机受到核函数必须满足Mercer条件和惩罚参数C及不敏感参数计算量过大等限制;粗糙集理论在处理异常或噪声数据方面常常会显得无能为力,并且在建立模型时需要大量的数据样本;神经网络容易陷入局部最优,且有过拟合及收敛速度慢的缺点;而且关于如何处理污水数据类型之间的平衡性,并且不影响故障诊断的性能,在目前的污水故障诊断研究中较少提及。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种Fast RVM污水处理故障诊断方法,通过基于聚类的快速相关向量机对多数类数据压缩和虚拟少数类向上采样的对少数类数据扩充,降低了污水数据的不平衡性,同时采用FastRVM对污水生化处理过程建立分类模型,有效地提高了对污水生化处理系统的故障诊断精度。
本发明的目的通过以下的技术方案实现:
一种Fast RVM污水处理故障诊断方法,包含以下顺序的步骤:
S1.剔除污水输入和输出的数据中的异常点,由于各输入变量量纲的不同,对其进行归一化处理,归一化到[0,1]区间中;
S2.基于聚类的快速相关向量机多数类数据压缩模块,将训练样本中的多数类样本数据采用K-means方法进行聚类;
S3.虚拟少数类向上采样的少数类数据扩充模块将训练样本中的少数类样本数据采用SMOTE(虚拟少数类向上采样方法)进行数据扩充;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610009907.3/2.html,转载请声明来源钻瓜专利网。