[发明专利]一种基于机器学习的社交网络垃圾用户过滤方法在审
申请号: | 201410332643.6 | 申请日: | 2014-07-14 |
公开(公告)号: | CN104090961A | 公开(公告)日: | 2014-10-08 |
发明(设计)人: | 郑相涵;陈国龙;曾志鹏 | 申请(专利权)人: | 福州大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 蔡学俊 |
地址: | 350108 福建省福州市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 机器 学习 社交 网络 垃圾 用户 过滤 方法 | ||
1.一种基于机器学习的社交网络垃圾用户过滤方法,其特征在于,包括以下步骤:
步骤S1:针对一社交网络,定义需要从所述社交网络的社交用户中提取的特征向量,构建一垃圾消息过滤规则集;所述垃圾消息过滤规则集中定义有多个垃圾关键字,各垃圾关键字对应有一分值,从而可根据社交消息中出现垃圾关键字的个数、频次,计算社交消息的垃圾关键字得分;
步骤S2:从所述社交网络中取一定数量的社交用户作为训练样本,所述社交用户包括正常用户和垃圾用户,然后通过信息增益算法对各训练样本发布的社交消息进行特征提取,得到各训练样本的特征向量中除平均垃圾关键字得分之外的所有元素;
步骤S3:根据垃圾消息过滤规则集,计算各训练样本发布的所有社交消息的垃圾关键字得分,进而求得各训练样本的平均垃圾关键字得分,得到各训练样本完整的特征向量;
步骤S4:将步骤S3得到的各训练样本的特征向量,输入支持向量机进行训练,得到垃圾用户过滤模型;
步骤S5:利用所述垃圾用户过滤模型对待测用户进行检测,判断待测用户是否为垃圾用户。
2.根据权利要求1所述的一种基于机器学习的社交网络垃圾用户过滤方法,其特征在于,步骤S1中,所述社交用户的特征向量V2为:
V2=[关注数,粉丝数,消息数,双向关注数,收藏数,注册天数,关注数/粉丝数,日发消息数,平均被转发次数,平均被评论次数,平均被赞次数,平均URL链接数,平均图片数,平均话题数,平均的用户数,平均垃圾关键字得分,原创消息比例,垃圾消息比例]。
3.根据权利要求1所述的一种基于机器学习的社交网络垃圾用户过滤方法,其特征在于,步骤S1中,所述垃圾消息过滤规则集的建立方法如下:
步骤S101:从所述社交网络中获取一定数量的垃圾消息;
步骤S102:对每条垃圾消息进行中文分词,每条垃圾消息得到一个词语列表{key1, key2, …, keyi, …},keyi表示所述垃圾消息的第i个分词;
步骤S103:对每个词语列表采用信息增益算法计算信息增益值,每个词语列表得到一个键值对集合{key1:IG(key1), key2:IG(key2), …, keyi:IG(keyi), …},IG(keyi)表示第i个分词的信息增益值;
步骤S104:将不同的键值对集合进行合并,其中对不同键值对集合中均有出现的分词的信息增益值进行累加,作为合并后的键值对集合对应于该分词的信息增益值;
步骤S105:对于合并后的键值对集合,根据信息增益值从大到小对分词进行排序,取出前n个分词作为垃圾消息过滤规则集的垃圾关键字,分词的信息增益值作为垃圾关键字的分值,从而建立所述垃圾消息过滤规则集。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410332643.6/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种信息呈现方法及装置
- 下一篇:一种基于领域本体的语义信息检索系统及方法