[发明专利]群智机器学习的焚烧炉有害物排放达标控制系统及方法有效
| 申请号: | 201310438010.9 | 申请日: | 2013-09-22 |
| 公开(公告)号: | CN103488090A | 公开(公告)日: | 2014-01-01 |
| 发明(设计)人: | 刘兴高;许森琪;张明明 | 申请(专利权)人: | 浙江大学 |
| 主分类号: | G05B13/04 | 分类号: | G05B13/04 |
| 代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 周烽 |
| 地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 机器 学习 焚烧 有害物 排放 达标 控制系统 方法 | ||
1.一种群智机器学习的焚烧炉有害物排放达标达标控制系统,包括焚烧炉、智能仪表、DCS系统、数据接口以及上位机,所述的DCS系统包括控制站和数据库;所述现场智能仪表与DCS系统连接,所述DCS系统与上位机连接,其特征在于:所述的上位机包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、化学耗氧量(COD)和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2x表示训练样本的方差。模糊方程模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,‖·‖为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξii是松弛变量的第i个分量,αi(i=1,…,N)是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而γ是最小二乘支持向量机的惩罚因子,上标T表述矩阵的转置。μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
粒子群算法优化模块,用于采用粒子群算法对模糊方程中最小二乘支持向量机局部方程的惩罚因子和误差容限值进行优化,具体步骤如下:
①确定粒子群的优化参数为最小二乘支持向量机局部方程的惩罚因子和误差容限值、粒子群个体数目popsize、最大循环寻优次数itermax、第p个粒子的初始位置rp、初始速度vp、局部最优值Lbestp以及整个粒子群的全局最优值Gbest。
②设定优化目标函数,将其转换为适应度,对每个局部模糊方程进行评价;通过相应的误差函数计算适应度函数,并认为误差大的粒子适应度小,粒子p的适应度函数表示为:
fp=1/(Ep+1) (11)
式中,Ep是模糊方程系统的误差函数,表示为:
式中,是模糊方程系统的预测输出,Oi为模糊方程系统的目标输出;
③按照如下公式,循环更新每个粒子的速度和位置,
vp(iter+1)=ω×vp(iter)+m1a1(Lbestp-rp(iter))+m2a2(Gbest-rp(iter))
(13)
rp(iter+1)=rp(iter)+vp(iter+1) (14)
式中,vp表示更新粒子p的速度,rp表示更新粒子p的位置,Lbestp表示更新粒子p的个体最优值,Gbest即为对应于第i个标准化后的训练样本Xi的COD预报值和使COD排放达标的操作变量值,iter表示循环次数,ω是粒子群算法中的惯性权重,m1、m2是对应的加速系数,a1、a2是[0,1]之间的随机数;
④对于粒子p,如果新的适应度大于原来的个体最优值,更新粒子的个体最优值:
Lbestp=fp (15)
⑤如果粒子p的个体最优值Lbestp大于原来的粒子群全局最优值Gbest,更新原来的粒子群全局最优值Gbest:
Gbest=Lbestp (16)
⑥判断是否满足性能要求,若是,结束寻优,得到一组优化的模糊方程的局部方程参数;否则返回步骤③,继续迭代寻优,直至达到最大迭代次数itermax。
迭代终止时的Gbest即为对应于第i个标准化后的训练样本Xi的COD预报值和使COD排放达标的操作变量值。
所述的上位机还包括:
判别模型更新模块,用于按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测化学耗氧量与函数预报值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标的新数据加入训练样本数据,更新模型。结果显示模块,用于将COD预报值和使COD排放达标的操作变量值传给DCS系统,在DCS的控制站显示,并通过DCS系统和现场总线传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。信号采集模块,用于依照设定的每次采样的时间间隔,从数据库中采集数据。所述的关键变量包括进入焚烧炉的废液流量、进入焚烧炉的空气流量和进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
2.一种用如权利要求1所述的群智机器学习的焚烧炉有害物排放达标达标控制系统实现的控制方法,其特征在于:所述控制方法具体实现步骤如下:
1)、对焚烧炉有害物排放过程对象,根据工艺分析和操作分析,确定所用的关键变量,从DCS数据库中采集生产正常时所述变量的数据作为训练样本TX的输入矩阵,采集对应的COD和使COD排放达标的操作变量数据作为输出矩阵Y;
2)、将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化,使得其均值为0,方差为1。该处理采用以下算式过程来完成:
2.1)计算均值:
2.2)计算方差:
2.3)标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、化学耗氧量(COD)和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2x表示训练样本的方差。
3)对从数据预处理模块传过来的训练样本,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,m为模糊分类过程中需要的分块矩阵指数,通常取作2,‖·‖为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi(i=1,…,N)是对应的拉格朗日乘子的第i个分量,w是最小二乘支持向量机超平面的法向量,b是相应的偏移量,而γ是最小二乘支持向量机的惩罚因子,上标T表述矩阵的转置。μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
4)采用粒子群算法对模糊方程中最小二乘支持向量机局部方程的惩罚因子和误差容限值进行优化,具体步骤如下:
①确定粒子群的优化参数为最小二乘支持向量机局部方程的惩罚因子和误差容限值、粒子群个体数目popsize、最大循环寻优次数itermax、第p个粒子的初始位置rp、初始速度vp、局部最优值Lbestp以及整个粒子群的全局最优值Gbest。
②设定优化目标函数,将其转换为适应度,对每个局部模糊方程进行评价;通过相应的误差函数计算适应度函数,并认为误差大的粒子适应度小,粒子p的适应度函数表示为:
fp=1/(Ep+1) (11)
式中,Ep是模糊方程系统的误差函数,表示为:
式中,是模糊方程系统的预测输出,Oi为模糊方程系统的目标输出;
③按照如下公式,循环更新每个粒子的速度和位置,
vp(iter+1)=ω×vp(iter)+m1a1(Lbestp-rp(iter))+m2a2(Gbest-rp(iter))
(13)
rp(iter+1)=rp(iter)+vp(iter+1) (14)
式中,vp表示更新粒子p的速度,rp表示更新粒子p的位置,Lbestp表示更新粒子p的个体最优值,Gbest即为对应于第i个标准化后的训练样本Xi的COD预报值和使COD排放达标的操作变量值,iter表示循环次数,ω是粒子群算法中的惯性权重,m1、m2是对应的加速系数,a1、a2是[0,1]之间的随机数;
④对于粒子p,如果新的适应度大于原来的个体最优值,更新粒子的个体最优值:
Lbestp=fp (15)
⑤如果粒子p的个体最优值Lbestp大于原来的粒子群全局最优值Gbest,更新原来的粒子群全局最优值Gbest:
Gbest=Lbestp (16)
⑥判断是否满足性能要求,若是,结束寻优,得到一组优化的模糊方程的局部方程参数;否则返回步骤③,继续迭代寻优,直至达到最大迭代次数itermax。
迭代终止时的Gbest即为对应于第i个标准化后的训练样本Xi的COD预报值和使COD排放达标的操作变量值。
所述方法还包括:5)、判别模型更新模块,用于按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测化学耗氧量与函数预报值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标的新数据加入训练样本数据,更新模型。
6)、在所述的步骤4)中得到的COD预报值和使COD排放达标的操作变量值,将结果传给DCS系统,在DCS的控制站显示,并通过DCS系统和现场总线传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。所述的关键变量包括进入焚烧炉的废液流量、进入焚烧炉的空气流量和进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310438010.9/1.html,转载请声明来源钻瓜专利网。





