[发明专利]一种基于极端学习机的电网谐波电压信号检测方法有效
申请号: | 201310293529.2 | 申请日: | 2013-07-12 |
公开(公告)号: | CN103412171A | 公开(公告)日: | 2013-11-27 |
发明(设计)人: | 刘国海;钱鹏;陈兆岭;丁云;项子旋 | 申请(专利权)人: | 江苏大学 |
主分类号: | G01R19/00 | 分类号: | G01R19/00;G01R23/16 |
代理公司: | 南京知识律师事务所 32207 | 代理人: | 李媛媛 |
地址: | 212013 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 极端 学习机 电网 谐波 电压 信号 检测 方法 | ||
技术领域
本发明涉及一种基于极端学习机的单隐层前馈神经网络谐波电压信号检测方法,属于电压信号处理技术领域。
背景技术
随着各种电力电子装置和非线性负载的大量应用,电力系统的谐波污染日益严重,给电力系统的安全经济运行带来了极大的危害。谐波能够产生很大的危害,由于供电系统和输电线路具有一定的阻抗,这个阻抗是随频率变化的,各次谐波电压流过电网时会产生一定的电压降,此电压降叠加在供电电压上,引起电网电压波形畸变,使电能质量下降,影响发电供电和用电设备的安全经济运行,增加对通信系统的干扰。同时,电网谐波对各种电气设备,对继电保护及自动装置、计算机测量和计量仪器均有不利影响。由于谐波的作用引起的经济损失,缩短了电气设备的寿命,有些情况下还使产品的质量降低,数量减少。随着电力系统自动化和信息化程度的提高,出现了很多电力电子装置,如有源电力滤波器、静止无功补偿器和动态电压恢复器,对它们而言,实时计算控制流程算法中的谐波和无功电压的检测是整个方案的关键,能否快速精确地检测出所需的补偿量,并具有良好的动态跟踪性能,决定了整个自动化装置的工作性能。
近几年来,国内外已取得了一些研究成果,其中基于快速傅里叶变换(Fast Fourier Transforms:FFT)的谐波检测法、基于瞬时无功功率理论的谐波检测法,是目前应用较广的方法。尽管这些方法各有优势,但在电力工程中依然存在着某些不足。例如FFT谐波检测法有频谱混叠、栅栏效应和频谱泄漏等现象,又如p-q法、ip-iq法的检测精度和实时性过于依赖低通滤波器性能。故上述诸法的准确度和实时性均受到影响,无法满足电网谐波测量要求
发明内容
本发明的目的在于针对现有技术的不足,提出一种基于极端学习机的单隐层前馈神经网络谐波电压信号检测方法,利用极端学习机良好的非线性函数逼近能力,来达到有效提升谐波检测实时性和精确度的目的。本发明可应用于对电压信号实时快速精确计算,应用于电力系统的实时检测、补偿和控制,以及用于高要求高精度等特殊场合电源的辅助优化。
本发明的一种基于极端学习机的单隐层前馈神经网络谐波电压信号检测方法,包括以下步骤:
步骤1、样本选取。要使谐波测量电路达到一定的精度,应针对不同的测量对象,根据实际畸变波形收集训练样本,使谐波测量电路能适合测量某一类(或几类)非线性负载所产生的畸变波形谐波分量。但是在电网中畸变波形千差万别,含有的谐波成分也很不相同,不可能收集到所有类型的畸变波形,况且有些畸变波形也不适合作为训练样本。所以,应从理论上合理抽取训练样本。分析电网中典型的非线性负载所产生的畸变波形发现大多都是奇次谐波,特别是整流型非线性负载,产生谐波的幅值一般不超过基波幅值的50%,谐波次数越高幅值越小。所以,在实际测量时可以只测量其中的奇次谐波,这样可以把训练样本的选择范围缩小。于是,电力系统中的一些非正弦周期电压可用傅里叶级数展开。
式中,Uh为第h次谐波电压的幅值,为第h次谐波电压的初相角,ω为基波角频率,Ah和Bh为傅氏系数。据此,,ω,Ah和Bh的关系式为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201310293529.2/2.html,转载请声明来源钻瓜专利网。