[发明专利]一种基于煤岩图像特征抽取以及分类识别的煤岩分界方法和系统有效

专利信息
申请号: 201210440022.0 申请日: 2012-11-07
公开(公告)号: CN103207999A 公开(公告)日: 2013-07-17
发明(设计)人: 孙继平;佘杰 申请(专利权)人: 中国矿业大学(北京)
主分类号: G06K9/46 分类号: G06K9/46;G06K9/66
代理公司: 暂无信息 代理人: 暂无信息
地址: 100083 北京市海淀*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 图像 特征 抽取 以及 分类 识别 分界 方法 系统
【说明书】:

技术领域

本发明属于计算机图像处理与模式识别领域,是一种利用图像纹理特征信息对煤岩图像进行特征抽取,并用支持向量机、神经网络等对特征向量进行分类从而达到识别采煤工作面煤层与顶底板岩层界面的方法和系统。

背景技术

在煤矿井下开采过程中,需要准确识别煤层和岩层,以此来控制采煤机摇臂的升降,从而避免切割至顶底板岩石。但是目前采煤机滚筒高度的调节主要由操作者通过人工的方法进行判断。众所周知,井下采煤工作面环境复杂不利于操作者做出准确的判断。因此采煤机不可避免会截割到顶底板岩石,造成一系列问题:加剧截齿磨损,缩短截齿寿命;截割岩石会产生火花,对于高瓦斯矿易产生恶性瓦斯爆炸事故;截割的岩石造成原煤质量下降。目前,我国主要采用保守开采的方式,实际采出率低,造成了严重的资源浪费。而现在的技术水平也很难对剩余的大量煤炭资源进行二次开采,因此开发煤岩识别技术具有重要意义。

从20世纪50年代起,美国等世界主要产煤国越来越重视煤岩识别领域的研究。例如:基于煤岩自然γ射线辐射特性的传感器法,此法通过γ射线在煤层和岩层的不同衰减规律,从而对煤层和岩层进行识别。该方法要求顶板岩石必须具有放射性元素,因此对于放射性元素较少的砂岩顶板则无法应用,限制了其在我国大面积推广。

中国专利CN101922290公开的煤岩界面识别方法,虽然能自动识别出煤岩,但是存在如下问题:第一,高压水射流会造成采煤现场排水困难;第二,被煤层或岩层反射的反射流对喷嘴形成的不同作用力很难准确感知,第三,采集信号的设备复杂,造成识别困难。

中国专利申请号201110377347.4,申请公布日2012.06.13,公开了一种基于图像的煤岩界面识别方法与系统,通过对采集到的煤岩图像进行特征抽取从而达到识别煤岩分界的目的。此种方法主要是利用图像的灰度共生矩阵的特征参数来构造特征向量,但是并不能从多尺度多方向反应图像纹理的差异性,从而导致所构造的特征向量不能全方位反应煤岩表面特征,影响煤岩界面识别精度。

发明内容

为克服上述现有技术的不足,本发明提供了一种基于煤岩图像特征抽取以及分类识别的煤岩分界方法和系统。

本发明所述的基于煤岩图像特征抽取以及分类识别的煤岩分界方法由以下技术方案实现:

首先在采煤工作面拍摄煤岩图像,然后抽取煤岩图像的纹理特征信息;然后对所提取的纹理特征信息构造成特征向量;

基于煤岩图像的纹理特征信息非常多,以大量煤、岩图像样本数据作为实验基础,为了充分体现煤和岩在不同尺度不同细节上的结构特征以及结合独立成分分析的纹理特征选择,采用的图像纹理特征信息包括两部分,其中一部分为原图像的角二阶矩、对比度、相关、均值、方差,另一部分为通过对煤岩图像进行Daubechies小波变换分解之后,对每个尺度的低频系数图像计算其角二阶矩、对比度、相关、均值、方差以及计算水平、垂直和对角三个方向的高频系数图像的总均值和总方差;

将纹理特征向量输入默认分类器进行训练从而创建最佳分类器,实现对煤岩界面的识别。

所述的基于煤岩图像特征抽取以及分类识别的煤岩分界方法,包括如下步骤:

A.在采煤工作面分别采集多幅煤、岩的图像,并将其分为训练样品图像、测试样品图像;

B.计算训练样品图像和测试样品图像的纹理图像特征值,并构造成特征子向量P1;

C.将训练样品图像和测试样品图像进行Daubechies小波变换;对每个分解尺度的低频系数图像计算其角二阶矩、对比度、相关、均值、方差,并构造成特征子向量P2;同时计算每个分解尺度水平、垂直和对角三个方向的高频系数图像的总均值和总方差,并构造成特征子向量P3;

D.构造纹理特征向量;

E.将纹理特征向量输入分类器,可供用户选择的分类器有以下几种:概率神经网络(PNN),径向基神经网络(RBF),最小距离分类器(MDC),极大似然分类器(MLC)和支持向量机等,用户可根据具体情况选择合适的分类器;

F.对分类器进行设置、训练和测试,然后输入待分类识别样品图像纹理特征向量进行分类,得到最后的分类结果。

所述步骤B中的纹理图像特征值分别为角二阶矩、对比度、相关、均值、方差。

所述步骤C中Daubechies小波变换的分解尺度为三。

所述步骤D中纹理特征向量的具体表达式为P=[P1,P2,P3]。

所述步骤E中选择支持向量机为默认分类器。

所述支持向量机采用径向基(RBF)核函数,

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学(北京),未经中国矿业大学(北京)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210440022.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top