[发明专利]一种(BiFeO3)m/(La0.7Sr0.3MnO3)n多层薄膜的制备方法有效
申请号: | 201210065339.0 | 申请日: | 2012-03-13 |
公开(公告)号: | CN102586747A | 公开(公告)日: | 2012-07-18 |
发明(设计)人: | 王顺利;朱晖文;李培刚;唐为华 | 申请(专利权)人: | 浙江理工大学 |
主分类号: | C23C14/34 | 分类号: | C23C14/34;C23C14/06 |
代理公司: | 浙江英普律师事务所 33238 | 代理人: | 陈小良 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 bifeo sub la 0.7 sr 0.3 mno 多层 薄膜 制备 方法 | ||
技术领域
本发明涉及一种多铁材料薄膜的制备方法,具体是指一种(BiFeO3)m/(La0.7Sr0.3MnO3)n多层薄膜材料的制备方法。
技术背景
多铁材料BiFeO3(BFO)是现存自然界中在室温下同时具有铁电性和反铁磁性的少数单相材料之一,其铁电居里转变温度TC~1100K,G-型反铁磁奈尔转变温度TN~673K,由此产生的磁电耦合性质以及磁电效应,使其在信息存储、自旋电子器件、磁传感器等领域有着广阔的应用前景。另一类受到科学界与工业界广泛关注的材料是有着独特的电、磁及结构相变特性的钙钛矿结构稀土掺杂锰氧化物R1-xAxMnO3(R=La,Pr,Nd,A=Ca,Sr,Ba)。这类锰氧化物在各种记录装置、传感器、红外探测器中均有着潜在的应用前景。BiFeO3晶体结构与钙钛矿结构稀土掺杂锰氧化物相似,可能制备出高质量的外延薄膜。人们期望利用La0.7Sr0.3MnO3(LSMO)材料与BiFeO3(BFO)材料制备出具有新特性的[(BiFeO3)m/(La0.7Sr0.3MnO3)n]x超晶格结构,其中m为每层BFO薄膜的厚度(单位为纳米),n为每层LSMO薄膜的厚度(单位为纳米),x为(BiFeO3)m/(La0.7Sr0.3MnO3)n的周期数。
众所周知,BiFeO3材料的严重漏电问题影响了它在电子器件方面的应用发展。理论研究表明,BiFeO3的带隙宽度为2.8ev,因而漏电不是其本征特性,应该是薄膜制备过程中的缺陷,非化学计量比等因素造成的。可以通过化学掺杂的方式来减少其漏电。Raniith等人研究了BiFeO3/SrTiO3超晶格,发现其漏电有很大程度的改善。此外,也有采用别的方式以降低BFO漏电的报道,如将BFO与别的绝缘材料相结合而制备成超晶格结构等。但是,利用磁控溅射法制备[(BiFeO3)20/(La0.7Sr0.3MnO3)10]4多层薄膜(其中20为每层BFO薄膜的厚度20nm,10为每层LSMO薄膜的厚度10nm,4为(BiFeO3)m/(La0.7Sr0.3MnO3)n的周期数)材料还没有报道。
发明内容
本发明针对现有技术中的不足,提出了一种方便、有效的制备方法。
本发明是通过下述技术方案得以实现的:
一种(BiFeO3)m/(La0.7Sr0.3MnO3)n多层薄膜材料的制备方法,其特征在于,包括下述步骤:
(1)将已经清洗好的SrTiO3为衬底固定在托板上,关好各气阀后抽真空,直至真空度达到1.0×10-4Pa以上,通入氩气和氧气,调节分子泵闸板阀,将气压调整到1-3Pa;
(2)设定衬底温度为700-750℃,开射频源起辉,溅射功率分别为100-110W对靶材预溅射5分钟,然后升高射频功率至115-120W进行溅射;
(3)待机器各方面参数稳定后;先在SrTiO3衬底上通过溅射、沉积LSMO薄膜;然后用硅片遮住一半的LSMO薄膜区域,再用溅射、沉积BFO薄膜;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江理工大学,未经浙江理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210065339.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种遥控器放置装置
- 下一篇:一种倒U字形花环工艺茶造型的生产方法
- 同类专利
- 专利分类
- 一种制备BiFeO<sub>3</sub>薄膜的方法
- 在SrTiO<sub>3</sub>衬底上调控多铁铁酸铋外延薄膜带隙的方法
- 一种梯度铁电薄膜太阳能电池的制备方法
- BiFeO<sub>3</sub>锂离子电池阳极材料的制备方法
- BiFeO<sub>3</sub>钠离子电池阳极材料的制备方法
- 一种制备纯相BiFeO<sub>3</sub>陶瓷的湿化学方法
- 一种Tb、Mn 和Cu 三元共掺杂的低漏电流BiFeO<sub>3</sub> 薄膜及其制备方法
- 一种B位Mn和Ni共掺杂高剩余极化强度的BiFeO<sub>3</sub> 薄膜及其制备方法
- 一种Tb和Mn共掺杂高剩余极化强度的BiFeO<sub>3</sub> 薄膜及其制备方法
- 一种BiFeO<base:Sub>3
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法