[发明专利]一种基于卷积神经网络的跨领域面部特征解析方法有效
申请号: | 201711251399.0 | 申请日: | 2017-12-01 |
公开(公告)号: | CN107944410B | 公开(公告)日: | 2020-07-28 |
发明(设计)人: | 石宇;张丽君;刘鹏程;周祥东 | 申请(专利权)人: | 中国科学院重庆绿色智能技术研究院 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 上海光华专利事务所(普通合伙) 31219 | 代理人: | 尹丽云 |
地址: | 400714 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于卷积神经网络的跨领域面部特征解析方法,包括:采集样本数据;根据采集的样本数据中的有标签数据及其类别,对无标签数据的样本类别、样本相似度和样本所属领域进行预测;根据预测结果获取模型参数,建立跨领域面部特征解析网络模型;对所述模型进行训练;通过训练后的跨领域面部特征解析网络模型执行跨领域面部特征解析任务;本发明将自适应特征学习和识别模型训练联合到统一的卷积神经网络框架中,同时优化样本标签预测、领域标签预测和样本相似性预测三个目标函数的损失,确保网络学习到的面部图像特征具有类间判别性和领域不变性,尤其适用于跨领域面部特征解析。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 领域 面部 特征 解析 方法 | ||
【主权项】:
一种基于卷积神经网络的跨领域面部特征解析方法,其特征在于,包括:采集样本数据;根据采集的样本数据中的有标签数据及其类别,对无标签数据的样本类别、样本相似度和样本所属领域进行预测;根据预测结果获取模型参数,建立跨领域面部特征解析网络模型;对所述模型进行训练;通过训练后的跨领域面部特征解析网络模型执行跨领域面部特征解析任务。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院重庆绿色智能技术研究院,未经中国科学院重庆绿色智能技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711251399.0/,转载请声明来源钻瓜专利网。
- 上一篇:能够区分关键动作的视频分析方法及装置
- 下一篇:指纹图像传感器及指纹识别系统