[发明专利]一种基于混合多尺度分析的红外与可见光图像融合算法有效

专利信息
申请号: 201710621620.0 申请日: 2017-07-27
公开(公告)号: CN107451984B 公开(公告)日: 2021-06-22
发明(设计)人: 江泽涛;吴辉 申请(专利权)人: 桂林电子科技大学
主分类号: G06T5/50 分类号: G06T5/50
代理公司: 桂林市华杰专利商标事务所有限责任公司 45112 代理人: 周雯
地址: 541004 广西*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于混合多尺度分析的红外与可见光图像融合算法,包括如下步骤:步骤1:对红外与可见光图像进行NSCT分解,得到低频子带与高频子带;步骤2:对低频子带采用静态小波变换,得到一个低频子带和三个高频子带,分别采用局部能量与绝对值取大相结合和压缩感知理论对低、高频子带进行融合;步骤3:判断待融合图像的清晰度,根据判决准则选取LSCN的增强层数;步骤4:对最高层高频子带采用绝对值取大的融合规则,其余子带采用改进PCNN模型进行融合;步骤5:对融合结果进行NSCT逆变换,得到最终的融合图像。本发明得到的融合图像边缘突出,对比度高,目标突出,算法的平均梯度、空间频率等指标均高于现有技术。
搜索关键词: 一种 基于 混合 尺度 分析 红外 可见光 图像 融合 算法
【主权项】:
一种基于混合多尺度分析的红外与可见光图像融合算法,其特征在于:包括如下步骤:步骤1:对红外与可见光图像分别进行NSCT分解,得到低频子带LJ(x,y)与高频子带Hj,r(x,y),其中J为分解层数,j、r代表分解尺度和方向数;步骤2:对低频子带采用静态小波变换,得到一个低频子带和三个高频子带,分别采用局部能量与绝对值取大相结合和压缩感知理论对低、高频子带进行融合,再进行小波逆变换得到NSCT重构的低频子带;步骤3:判断待融合图像的清晰度,根据判决准则选取LSCN的增强层数;步骤4:对最高层高频子带采用绝对值取大的融合规则,其余子带采用改进PCNN模型进行融合;步骤5:将融合得到的低频子带和高频子带进行NSCT逆变换,得到最终的融合图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710621620.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top