[发明专利]一种基于多分类器集成的脑电分类方法在审

专利信息
申请号: 201710055777.1 申请日: 2017-01-25
公开(公告)号: CN106803081A 公开(公告)日: 2017-06-06
发明(设计)人: 胡建中;葛荣祥;许飞云;贾民平;黄鹏 申请(专利权)人: 东南大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06K9/48;G06F3/01
代理公司: 南京瑞弘专利商标事务所(普通合伙)32249 代理人: 杨晓玲
地址: 211189 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于多分类器集成的脑电分类方法,包括如下步骤脑电信号采集及预处理;联合运用时域分析方法、自回归模型方法、离散小波变换方法对脑电信号进行特征提取;建立个体支持向量机分类器模型,并将支持向量机分类器的输出转换为概率输出;多分类器集成脑电模式分类,利用D‑S证据理论对3个个体支持向量机分类器的分类信息进行融合,得到最终的分类结果。实验结果表明,本发明方法能够提高运动想象脑电信号分类的准确率。
搜索关键词: 一种 基于 分类 集成 方法
【主权项】:
一种基于多分类器集成的脑电分类方法,其特征在于:包括如下步骤:步骤(1)脑电信号采集及预处理:多次采集受试者运动想象动作模态下的脑电信号,并对每一次采集的脑电信号进行带通滤波处理以形成一个样本,从所有的样本中随机抽取半数样本作为训练样本集,剩余的半数样本作为测试样本集;步骤(2)脑电信号特征提取:对步骤1预处理后的每一个样本进行如下处理:(a)采用时域分析方法,提取样本的时域统计量特征,组成统计量特征域;(b)采用自回归模型方法,提取样本的自回归模型特征,组成自回归模型特征域;(c)采用离散小波变换方法,对样本进行分解与重构,提取重构信号的均值、方差和能量特征,组成离散小波变换特征域;步骤(3)建立个体支持向量机分类器模型:针对训练样本集,在每个特征域下分别对支持向量机进行训练,并将支持向量机的输出转换为概率输出,得到三个个体支持向量机分类器;步骤(4)多分类器集成脑电模式分类:针对测试样本集中的每个样本,先将相应的特征输入到对应的个体支持向量机分类器内,得到每个个体支持向量机分类器的分类信息,然后利用D‑S证据理论对三个个体支持向量机分类器的分类信息进行融合,得到该样本最终的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710055777.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top