[发明专利]一种视觉目标跟踪方法及装置有效
申请号: | 201611151489.8 | 申请日: | 2016-12-13 |
公开(公告)号: | CN106650805B | 公开(公告)日: | 2019-07-30 |
发明(设计)人: | 尹英杰;王欣刚;徐德 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 钟文芳 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种目标跟踪方法及装置。所述方法包括:离线训练特定目标的检测器;采用检测器检测图像中的目标;在线学习跟踪器判别模型;采用跟踪器跟踪下一帧图像中的目标;通过检测器判断跟踪器是否跟踪失败;若跟踪失败则重新检测图像中的目标,若跟踪成功则累积目标的特征向量及对应的子图像,并在线学习跟踪器判别模型;通过基于密度峰值的方法在线挖掘正支持向量,对跟踪器进行在线修正,然后采用跟踪器跟踪下一帧图像中的目标。 | ||
搜索关键词: | 一种 视觉 目标 跟踪 方法 装置 | ||
【主权项】:
1.一种视觉目标跟踪方法,其特征在于,该方法包括步骤如下:步骤S1:离线训练预定目标的检测器步骤S2:采用所述检测器检测第i‑1帧图像中的所述预定目标,其中i为大于等于1的正整数;步骤S3:在线学习跟踪器判别模型;步骤S4:采用所述跟踪器判别模型跟踪第i帧图像中的所述预定目标;步骤S5:通过所述检测器判断所述跟踪器判别模型跟踪所述预定目标是否成功;步骤S6:若所述跟踪器判别模型跟踪所述预定目标成功,则存储所述跟踪器判别模型跟踪得到的所述预定目标的特征向量及跟踪得到的目标图像,并在线学习跟踪器判别模型,转步骤S7;否则,i=i+1,转步骤S2重新检测所述预定目标并重新在线学习所述跟踪器判别模型;步骤S7:通过基于密度峰值的方法在线挖掘正支持向量,并对跟踪器进行在线修正,i=i+1,然后跳转到步骤S4。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611151489.8/,转载请声明来源钻瓜专利网。